
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-022-00417-y
Datenbank Spektrum (2022) 22:99–107

Algorithms for Windowed Aggregations and Joins on Distributed
Stream Processing Systems

Juliane Verwiebe1 · Philipp M. Grulich1 · Jonas Traub1 · Volker Markl1,2

Received: 31 January 2022 / Accepted: 13 May 2022 / Published online: 9 June 2022
© The Author(s) 2022

Abstract
Window aggregations and windowed joins are central operators of modern real-time analytic workloads and significantly
impact the performance of stream processing systems.
This paper gives an overview of state-of-the-art research in this area conducted by the Berlin Institute for the Foundations
of Learning and Data (BIFOLD) and the Technische Universität Berlin. To this end, we present different algorithms
for efficiently processing windowed operators and discuss techniques for distributed stream processing. Recently, several
approaches have leveraged modern hardware for windowed stream processing, which we will also include in this overview.
Additionally, we describe the integration of windowed operators into various stream processing systems and diverse
applications that use specialized window operations.

Keywords Window · Window Aggregation · Windowed Joins · Distributed · Stream Processing · Stream Processing
Systems · Modern Hardware

1 Introduction

Windowing is a fundamental building block of any stream
processing system. Data streams are divided into windows
that capture a finite portion of tuples to which stateful op-
erators can be applied. As a result, windowing is a pre-
requisite for performing aggregations or joins and enables
stream processing systems to produce timely responses to
long-running streaming queries.

Modern real-time analytics require complex queries, in-
cluding joins, complex window types, different window
measures, and diverse aggregation functions. Concurrent
queries and high-velocity data streams generate increased

� Juliane Verwiebe
juliane.verwiebe@tu-berlin.de

Philipp M. Grulich
grulich@tu-berlin.de

Jonas Traub
jonas.traub@tu-berlin.de

Volker Markl
volker.markl@tu-berlin.de

1 Technische Universität Berlin, Einsteinufer 17, 10623 Berlin,
Germany

2 DFKI GmbH, Alt-Moabit 91c, 10559 Berlin, Germany

workloads for the systems. The algorithms also have to take
into account characteristics of the data streams, such as out-
of-order tuples or concept drift. Consequently, stream pro-
cessing systems need efficient approaches for windowed
operators. Centralized computation solutions limit the scal-
ability of applications. Thus, the efficient analysis of ever-
increasing data streams requires processing with multiple
nodes. However, distributed approaches need to be adapted
to the characteristics of stream processing and windowed
operators.

Complex query workloads in combination with data-in-
tensive streams lead to a significant overhead in stream
processing systems. Low latency and high throughput are
requirements of today’s real-time applications. As a result,
the efficiency of window aggregation and windowed joins is
critical for the performance of stream processing systems.

In this paper, we particularly provide an overview of the
research conducted at TU Berlin and BIFOLD (Table 1). We
present different approaches for the efficient computation
of windowed aggregations and joins on stream processing
systems. The rest of this paper is structured as follows: We
first discuss related work in Sect. 2. Sect. 3 presents oper-
ators that utilize stream slicing, which enables efficient ag-
gregation for overlapping windows and concurrent queries.
The approaches presented in Sect. 4 exploit advantages of
modern hardware, such as multi-core processors and high-

K

https://doi.org/10.1007/s13222-022-00417-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-022-00417-y&domain=pdf


100 Datenbank Spektrum (2022) 22:99–107

Table 1 Overview over the presented research

Windowed
Operators

Cutty [14], Scotty [65, 66, 68], AJoin [34], Eco-
Join [44], Zhang et al. [76], Parallel ADWIN [26]

Modern
Hardware

Zeuch et al. [72], Grizzly [28], Slash [21]

Distributed
Window
Processing

AStream [35], Disco [8], Rhino [6, 20]

Stream
Processing
Systems

Scotty Connectors to Apache Flink [13], Storm [61],
Beam [3], Samza [47], Kafka Streams [38], Spark [60,
71]; NebulaStream [73, 74], Agora [69], SENSE [62,
63, 67]

Applications Condor [48], Stream Generator [27], I2 [64], M4 [32]

speed networks, to accelerate the performance of stream
processing systems. Sect. 5 discusses operators that utilize
parallelism and distributed processing. In Sect. 6, we de-
scribe the integration of the techniques and algorithms in
various stream processing systems. Various applications are
provided in Sect. 7. We summarize the evaluation results of
the presented work in Sect. 8 and point out directions for
future research in Sect. 9.

2 RelatedWork

While this paper focuses on presenting research conducted
at BIFOLD and TU Berlin, there exists a wide body of work
dealing with related challenges. This section reviews related
work from different research areas, which are grouped ac-
cording to the topics of the remaining paper.

Window Aggregation Techniques. Li et al. [40–42] con-
tribute to the research area of window aggregation by in-
troducing buckets which store window aggregates that can
be computed incrementally to achieve low latency. Shar-
ing aggregates among overlapping windows is not possi-
ble with buckets, resulting in redundant computations. To
overcome this issue, several techniques use partial window
aggregation (e.g., Arasu and Widom [5], Theodorakis et
al. [57], Zhang et al. [75]), where intermediate results of an
aggregate are calculated and then combined to obtain the
final result. For storing partial aggregates, Tangwongsan et
al. [53–55] utilize various data structures (e.g., arrays, trees,
or stacks) in different partial aggregation techniques includ-
ing FlatFAT, TwoStacks, DABA, and FIBA. Slicing tech-
niques, such as Pairs presented by Krishnamurthy et al. [39],
increase throughput by assigning each tuple to exactly one
non-overlapping slice, requiring only one aggregation op-
eration. Furthermore, sharing aggregates is possible among
multiple concurrent window queries, as shown, for instance,
by Theodorakis et al. [58, 59]. Aggregation functions can
be differentiated in commutative or non-commutative, and

invertible or non-invertible. The optimization techniques of
Shein et al. [51, 52] address these different types of ag-
gregation functions. Bou et al. [10–12] present multiple
techniques for out-of-order incremental sliding window ag-
gregation. To give an overview of the different techniques,
Hirzel et al. [30] survey several sliding window aggrega-
tion algorithms and summarize that the choice of the best
algorithm depends on the aggregation operation, latency re-
quirements, window type, sharing requirements, and out-of-
order processing.

Stream Join Algorithms. Kang et al. [33] examine differ-
ent algorithms for stream joins over sliding windows and
propose a cost model for analyzing their expected perfor-
mance. Teubner and Müller [56] introduce the handshake
join as a method for inter-window joins (i.e., joining over-
lapping windows such as sliding windows) to utilize highly
parallel architectures. In a follow-up work, Roy et al. [49]
demonstrate that fast-forwarding tuples between CPU cores
reduces the high latency of the handshake join. Karnagel
et al. [36] utilize the GPU of tightly-coupled processors
with an integrated GPU for computationally intensive parts
of the stream join. As another technique for inter-window
joins, the SplitJoin proposed by Najafi et al. [46] introduces
a top-down dataflow model that utilizes modern multicores.
Elseidy et al. [22] processes intra-window joins (i.e., join-
ing two streams over a single window) on parallel threads
while adapting to data dynamics by state repartitioning and
dataflow routing. The concurrent stream join of Shahvarani
and Jacobsen [50] uses a shared index data structure for
state materialization on multi-core processors.

Stream Processing Systems. The first stream processing
systems that have been introduced are, for instance, Aurora
by Abadi et al. [1, 2], TelegraphCQ by Chandrasekaran et
al. [17], and NiagaraCQ by Chen et al. [18]. Systems pre-
sented more recently are Trill by Chandramouli et al. [15,
16] and Naiad by Murray et al. [45]. Koliosis et al. [37]
proposed SABER which optimizes stream processing on
heterogeneous processors combining CPUs and GPUs.
StreamBox [43] exploits modern hardware by grouping
tuples into epochs and processing them in parallel. Apache
Flink (Carbone et al. [13]), Storm (Toshniwal et al. [61]),
and Spark (Zaharia et al. [71]) are state-of-the-art open-
source stream processing systems.

3 Stream Slicing

Window aggregation has a high impact on the performance
of stream processing systems due to complex window types
(e.g., tumbling, sliding, or session windows), aggregation
functions (e.g., sum, avg, or median), concurrent queries,

K



Datenbank Spektrum (2022) 22:99–107 101

Fig. 1 Example window aggregation with stream slicing

and out-of-order events. The following work focuses on op-
timizing the window aggregation process for such complex
workloads.

Cutty [14] combines the approaches of stream slicing
and partial aggregation to support a wide range of differ-
ent window types. Stream slicing (see Fig. 1) decomposes
windows into non-overlapping subsets called slices. The
tuples contained in the slices are used to compute partial
aggregates, which can be combined to generate further in-
termediate results and final aggregates. Carbone et al. in-
troduce the concept of user-defined windows (UDWs) that
contain custom logic of window types defined by the user.
The differentiation in deterministic and non-deterministic
window types eliminates the need for knowing exact win-
dow semantics by exploiting the properties of these two
classes. Deterministic window types (e.g., tumbling, slid-
ing, session, punctuation) can decide during the processing
of the tuple whether a tuple represents the beginning or the
end of a window. In contrast, non-deterministic window
types (e.g., delta-based [23], multi-type [14, 23, 66], adap-
tive windowing [9]) can not assert whether the currently
processed tuple starts a window or not. The aggregator also
enables sharing aggregates between concurrent windows of
multiple queries.

Based on the Cutty technique, the open-source operator
Scotty [65, 66, 68] introduces general and efficient win-
dow aggregation for out-of-order streams. It yields general
applicability by implementing the general stream slicing
technique [66] which adapts to the different workload char-
acteristics of aggregation queries, i.e., window types, ag-
gregation functions (e.g., invertible, associative), window
measures (e.g., time-based, count-based), and stream order.
Scotty extends the slicing technique in combination with
out-of-order processing on complex types of windows such
as session windows. To this end, the framework1 supports
multiple window types of varying complexity (e.g., tum-
bling, sliding, punctuation, slide-by-tuple windows). Fur-
thermore, Scotty can be extended with user-defined window
types as well as aggregation functions.

1 Open Source Link: https://github.com/TU-Berlin-DIMA/scotty-
window-processor.

4 Algorithms for Optimizations onModern
Hardware

The following approaches aim to optimize window aggrega-
tions and joins on stream processing systems by exploiting
modern hardware, e.g., multi-core CPUs, GPUs, and high-
speed networks.

Zeuch et al. [72] propose a windowing mechanism us-
ing a double-buffer and lock-free data structures that allow
writing to a window buffer in parallel to minimize synchro-
nization overhead. Multiple non-active buffers store previ-
ous window results, output the final aggregation result, and
reinitialize the buffer memory. One buffer is always active
to collect incoming tuples, which avoids a delay in pro-
cessing the input stream and increases the throughput. To
reduce the latency, tuples are incrementally aggregated in
the active buffer whenever possible.

Grizzly [28] introduces adaptive query compilation to
increase the efficiency of streaming queries on modern
hardware. Depending on the specific window types, win-
dow measures, and window functions, Grizzly selects the
physical operators and generates specialized code. This en-
ables Grizzly to specialize the executed code with regards to
the user-provided workload. Furthermore, Grizzly follows
a task-based parallelization to utilize the modern multi-
core CPUs fully. Similar to Zeuch et al., it leverages lock-
free operations to compute window aggregates. To this end,
Grizzly introduces a lightweight coordination scheme to co-
ordinate the finalization of windows across multiple threads
while avoiding coordination overhead. As streaming queries
are inherently long-running, Grizzly continuously monitors
the execution, collects profiling information, and applies
adaptive optimizations to improve execution efficiency. For
example, it specializes the data structure for keyed aggre-
gations if it can detect a specific key distribution. In com-
bination with stream slicing, this technique could further
improve performance.

Edge devices in the Internet of Things (IoT) perform
computations of intermediate results closer to the data
sources to avoid network congestion and computation
overhead in the cloud. Since these devices are battery-
powered, they have a limited energy budget, which be-
comes more taxed when processing complex workloads.
Michalke et al. propose ecoJoin [44], a stream join operator
exploiting the modern hardware of these edge devices to
reduce energy consumption. In particular, ecoJoin focuses
on devices that combine embedded CPUs and GPUs on
a single system. To this end, it provides a new stream join
algorithm, which uses the GPU to accelerate processing.
The algorithm adapts the size of tuple batches based on
stream ingestion rates and latency tolerances. These batches
are distributed over the cores to parallelize the join phases.

K

https://github.com/TU-Berlin-DIMA/scotty-window-processor
https://github.com/TU-Berlin-DIMA/scotty-window-processor


102 Datenbank Spektrum (2022) 22:99–107

As a result, the efficiency increases even for fast input rates
on large windows.

Remote Direct Memory Access (RDMA) hardware al-
lows data transfer with high throughput and low latency.
This has the potential to mitigate the bottleneck that net-
works pose in distributed settings while fulfilling the real-
time requirements of stream processing. With a novel pro-
cessing model designed for RDMA, Slash [21] accelerates
distributed stream processing computations. The stateful
query executor applies multiple instances of the same oper-
ator in parallel to scale the processing of streaming queries
across many nodes. A special protocol enables the data ex-
change among nodes via RDMA channels leveraging the
full speed of the RDMA network. Multiple slash executor
instances store their partial state (e.g., partial aggregates of
windows) in the Slash State Backend. Distributed operator
states (e.g., of windows) are merged in a lazy approach. The
technique also provides a windowed join based on a hash-
join. Slash operates on a windowing approach that relies
on general stream slicing [66]. The shared mutable state
allows the technique to omit expensive re-partitioning op-
erations which increases the throughput in contrast to scale-
out stream processing systems.

5 Parallel and Distributed Stream
Processing

This section presents parallel and distributed techniques
that address the challenge of handling high-velocity data
streams while delivering real-time results with low latency
and high throughput.

Since the volume of data streams that need to be pro-
cessed in modern real-time analytics increases continu-
ously, scalability is an important factor of stream processing
systems. Distributed stream processing approaches enable
such scaling, but have to deal with challenges coming from
the distribution of streaming queries and operators, such
as windows, window aggregations, and windowed joins.
Disco [8] performs complex window aggregation in a dis-
tributed manner by aggregating incoming tuples on multiple
independent nodes and merging them to the final result.
Merging strategies ensure correct aggregation semantics
for different window types (i.e., context-free or context-
aware) and aggregation functions (i.e., decomposable or
holistic). In contrast to the centralized data collection that
stream processing systems generally perform, streams can
be processed closer to their sources.

Streaming queries have the property of being continu-
ous and long-running, but their operators may need to be
modified at some time, for instance, to adapt to varying
data rates. Bartnik et al. [6] present generic protocols that
allow the modification of operators and of the data flow of

running queries. Many stream processing systems enable
such a reconfiguration only by restarting the execution of
the modified query, which leads to a redistribution of the
query state and affects other systems relying on the output.
The protocols enable changing the operator function or in-
troducing new operators as well as migrating operators to
different nodes for distributed processing. Running queries
with very large distributed operator state can be reconfig-
ured on the fly with the library Rhino [20]. A handover
protocol migrates the processing and state of the running
operator among workers, and a state migration protocol
asynchronously replicates the local check-pointed state on
workers. During the configuration, Rhino guarantees ex-
actly-once processing and does not stop the query execu-
tion.

In real-world applications, it is often necessary to han-
dle many short-term ad-hoc queries in addition to process-
ing continuous long-running queries. The framework AS-
tream [35] extends distributed stream processing systems to
support ad-hoc query workloads while sharing computation
and resources. When operators have common upstream op-
erators and common partitioning keys, they can be shared
among queries. Using a distributed pipeline-parallel archi-
tecture, AJoin [34] supports ad-hoc stream processing joins.
The technique shares data and computation between mul-
tiple queries and utilizes late materialization to pass down
a reduced number of intermediate results to subsequent op-
erators. A periodic re-optimization of the query execution
plan at runtime ensures efficient execution.

The IoT consists of distributed and heterogeneous sen-
sor nodes, which brings new challenges for processing
data streams. Clock offsets occur among the diverse sensor
nodes due to different time synchronization techniques.
Consequently, joins are affected by incoherent timestamps
of tuples produced by multiple devices, resulting in incor-
rect predictions and false correlations. SENSE [67] provides
time coherence for data acquired from distributed sensors
without the need of requiring reliable clock synchronization
among all nodes. Traub combines the techniques presented
in SENSE with windowed joins and as well as temporal
and spatial aggregation techniques [62, 63].

SENSE, Rhino, and Scotty are also incorporated in the
the IoT platform NebulaStream (Sect. 6).

Over time, data streams are subject to changes, for in-
stance, changing user preferences or economic changes.
These so-called concept drifts lead to incorrect predictions
of the trained machine learning model because it is not ap-
propriately fitted to the current data. Adaptive windowing
(ADWIN) [9] detects concept drift and dynamically adapts
the model to changes. Grulich et al. [26] identify bottle-
necks of the ADWIN algorithm and modify it to run in
parallel on multiple threads. As a result, the scalability of
adapting to concept drift increases.

K



Datenbank Spektrum (2022) 22:99–107 103

Zhang et al. [76] have studied different algorithms of
parallel intra-window joins (i.e., joining two streams over
a single window) on multi-cores. They differentiate existing
approaches in lazy execution and eager execution methods.
The lazy approach buffers input tuples of windows from
two streams before joining them. Eager execution immedi-
ately joins tuples as they arrive, producing partial matches.
Zhang et al. conclude that the choice of an appropriate
algorithm depends on workload characteristics (e.g., tuple
arrival rate, window length), application requirements (e.g.,
latency, throughput), and hardware architectures (e.g., num-
ber of cores and vector extensions).

6 Systems Integration

As the proposed techniques provide efficient and state-of-
the-art window aggregation, they have been integrated into
various systems.

Scotty [65, 66, 68] can be integrated in various stream
processing systems. It already provides connectors for
Apache Flink [13], Apache Storm [61], Apache Beam [3],
Apache Samza [47], Apache Kafka Streams [38], and
Apache Spark Continous Processing [60, 71].

The NebulaStream [73, 74] platform offers an end-to-end
data-management system for the IoT. It provides a unified
environment for a sensor-fog-cloud infrastructure that han-
dles heterogeneous hardware, unreliable nodes, and elas-
tic network topology. To ensure a high performance across
these heterogeneous devices, NebulaStream utilizes adap-
tive query compilation [28] and generates specialized code
depending on the device capabilities. Furthermore, the sys-
tem follows the design principle of maximized sharing. To
achieve this on query level, the integration of AStream [35]
enables to share data among multiple streaming queries.
The general stream slicing technique [66] reuses partial ag-
gregation results among overlapping windows and is there-
fore integrated in NebulaStream to share data on an operator
level. Additionally, NebulaStream integrates Babelfish [29]
for the acceleration of UDF-based operators, e.g., to en-
able the definition of user-provided windows function and
aggregations.

Agora [69] provides a unified ecosystem for assets of the
entire data value chain i.e. algorithms, data, and physical
infrastructure components. In marketplaces, different stake-
holders can offer their assets and modify and remove them.
Agora enables not only to exchange assets but also to com-
bine them to novel applications as well as the resources to
execute these applications. Fair payment requires to track
the asset usage. A tracking function called from asset source
code, operators, or the tracking of the amount of processed
data results in many function calls. The aggregation of these

usage counters leverages the techniques Scotty [65, 66, 68]
and Disco [8].

Darwin [7] introduces a scale-in stream processing sys-
tem that attempts to maximize hardware utilization on di-
verse hardware setups to reduce the overall infrastructure
costs. To this end, it leverages query compilation and tailors
execution towards a specific hardware setup. Furthermore,
it provides fault-tolerance by supporting larger-than-mem-
ory window states.

7 Applications

In this section, we present diverse applications that utilize
windowed stream operations.

The framework Condor [48] allows users to write syn-
opses-based streaming jobs. Synopses enable the approx-
imate computation of quantities that are otherwise expen-
sive or impossible to compute precisely. The work models
synopses as stateful window aggregation functions due to
their similar concept of combining several values into one
total value. Condor supports parallel synopses computa-
tion and evaluation and implements all synopses types (i.e.,
sketches, histograms, wavelets, samplers). It uses Scotty as
an underlying slicing technique for computing approximate
aggregates with windowed synopses.

The open-source stream generator proposed by Grulich
et al. [27] enables the evaluation of modern stream process-
ing systems. It produces deterministic data streams from ar-
bitrary input data sets with different data rates, distributions,
and characteristics such as the fraction of out-of-order tu-
ples and their delay. Besides providing realistic workloads
by these configurations, it is able to generate the same ex-
periment data ensuring reproducibility.

To visualize streaming data in real-time, the interactive
development environment I2 [64] has been proposed. The
running cluster applications dynamically adapt to changes
in the visualization without restarting. The algorithm en-
sures that only the depicted data points are transferred,
which reduces workload in the front-end and backend.

The aggregation technique M4 [32] reduces the di-
mensionality of time-series data by rewriting queries for
RDBMS-based visualization systems. Additional operators
for data reduction are incorporated in the queries that de-
termine four values (i.e., min, max, first, last) per pixel
column. This reduces the computational load for visualiza-
tion while still providing loss-free plots in the form of line-
charts.

K



104 Datenbank Spektrum (2022) 22:99–107

8 Evaluation Summary

This section summarizes the main results of the evaluations
of each of the techniques presented. More detailed descrip-
tions of experiments and results can be found in the original
publications.

8.1 Stream Slicing

The evaluations of Cutty [14] and Scotty [65, 66, 68] show
that slicing techniques outperform other approaches such
as tuple buffers, buckets, and aggregate trees in terms of
throughput. Furthermore, they provide an increased scala-
bility to a large number of concurrent windows. In addi-
tion, Scotty outperforms alternative techniques with regard
to throughput and scales to a large amount of concurrent
windows for workloads that include out-of-order tuples and
context-aware windows (e.g., session windows).

8.2 Algorithms for Optimizations on Modern
Hardware

The experiments of Zeuch et al. [72] show that current
stream processing systems underutilize modern hardware in
terms of full computational power and memory bandwidth.
The proposed streaming optimizations for modern hard-
ware are compared to Apache Flink [13], Spark Stream-
ing [71], Storm [61], Saber [37], and StreamBox [43] on
three streaming benchmarks and enable a throughput up to
two orders of magnitude higher than these systems. The
evaluation shows that the lock-free windowing approach
provides a high throughput for stream processing systems
on modern hardware.

The optimizations of Zeuch et al. are also used in the
experiments of Grulich et al. [28], where Grizzly is com-
pared to two hand-optimized implementations [72], Apache
Flink [13], StreamBox [43], and Saber [37] on the Ya-
hoo! Streaming Benchmark [19] (Fig. 2). It’s utilization
of modern hardware causes Grizzly to outperform current
stream processing systems by up to one order of magnitude
in throughput. The query compilation approach addition-
ally shows this performance improvement under different
complex query workloads (i.e., window types, aggregation

Fig. 2 Throughput of Grizzly compared to state-of-the-art systems on
Yahoo! Streaming Benchmark

functions, concurrent queries) that have a high impact on
performance.

Michalke et al. [44] demonstrate that EcoJoin signif-
icantly enhances performance with regard to throughput
and power consumption compared to state-of-the-art stream
join algorithms. Adjusting batch sizes and scaling the clock
frequency leads to improved energy efficiency. The experi-
ments show that large batch sizes consume less power but
result in higher latencies, leading to a trade-off between the
two requirements.

In the evaluation presented by Del Monte et al. [21],
Slash is compared against state-of-the-art stream processing
systems such as LightSaber [58] and Apache Flink [13].
Native RDMA acceleration allows the system to scale
with the number of nodes and enables higher throughput
for common stream workloads than partitioning-based ap-
proaches. For window aggregations and windowed joins,
Slash achieves a significantly higher throughput compared
to the strongest scale-out baseline.

8.3 Parallel and Distributed Stream Processing

Benson et al. [8] compare Disco to centralized data collec-
tion and show that the distributed technique exhibits higher
performance by scaling linearly with the number of nodes
for decomposable and holistic aggregation functions. Disco
significantly reduces network traffic by completely avoiding
to send individual tuples between nodes for decomposable
functions. For holistic functions, it combines tuples and
sends them in slices to reduce TCP-overhead.

The protocols of Bartnik et al. [6] enable migrating op-
erators with small state as fast as Apache Flink’s [13] save-
point mechanism and outperforms it for migrating operators
of jobs with large state. The advantage over Apache Flink
is that the migration mechanism prevents data loss during
restarting a job, which occurs when data is not consumed
from a persistent source. The related work Rhino [20] re-
duces the latency compared to Flink [13] by up to three
orders of magnitude for large state. The state migration
protocol allows Rhino to reconfigure a query 50x faster
than Flink and 15x faster than Megaphone [31].

As shown by Karimov et al. [35], the framework AS-
tream supports thousand concurrent queries and a through-
put of 70 million tuples per second. For a fluctuating
workload of starting and deleting concurrent short-running
queries, the framework creates and deleted 50 queries per
10 seconds within 1 second event-time latency. AStream
deploys ad-hoc queries in the order of milliseconds which
is a much lower query deployment latency than Apache
Flink [13]. Along with Apache Flink and Spark, AStream is
compared to AJoin [34]. The stream join processing engine
outperforms all the systems for single query workloads and
performs better than Flink for simultaneous submission of

K



Datenbank Spektrum (2022) 22:99–107 105

all queries at compile time. With multiple joins operators
in a query, AJoin performs better than these other systems.

Experiments conducted by Traub et al. show that
SENSE [67] maintains a guaranteed coherence below
a user-defined upper bound while optimizing the coherence
estimate of tuples. Furthermore, the system is scalable to
thousands of sensor nodes, robust to node failures, and able
to reintegrate recovering nodes.

Grulich et al. [26] demonstrate that the parallel Opti-
mistic ADWIN algorithm outperforms the original imple-
mentation and an optimized sequential reimplementation
by an increased throughput of two orders of magnitude and
a reduced latency of at least 50%.

In their experiments for evaluating stream joins, Zhang
et al. [76] compare different parallel intra-window join al-
gorithms with regard to throughput, latency, and progres-
siveness on several real-world and synthetic workloads. An
algorithm that outperforms the other algorithms in all cases
does not exist. Their results show that lazy approaches per-
form better than specifically designed eager algorithms on
most workloads. They summarize their findings in a de-
cision tree that should guide the choice of an appropriate
algorithm based on different factors such as arrival rate, key
duplication, and number of cores.

8.4 Systems Integration

Stream slicing can conceptually be supported by every
dataflow system. Currently, Scotty is integrated in the
various open-source systems we listed before (Sect. 6).
For evaluation, Scotty was used as a window operator
within those systems and compared to their built-in op-
erators (Fig. 3). The results show that it provides higher
throughput then all of the tested systems’ built-in operators.

In an experiment performed by Zeuch et al. [73], the
throughput of the Yahoo! Streaming Benchmark [70] was
evaluated on on a RaspberryPi 3B+ using NebulaStream,
Python, Flink, and a hand-optimized Java program. Neb-
ulaStream achieves a throughput of more than 10 million
tuples per second and a higher performance than the others.
Additionally, the system reduces energy requirements while
achieving the same performance.

Fig. 3 Throughput of Scotty
compared to built-in operators
on different systems

In the evaluations of Benson et al. [7], Darwin is com-
pared to the scale-up engine Grizzly [28] and scale-out en-
gine Apache Flink [13]. The results show the same perfor-
mance as Grizzly for in-memory processing. Grizzly’s addi-
tional optimizations could be utilized orthogonal to Darwin.
In contrast, Darwin performs better than Flink by over an
order of magnitude.

8.5 Applications

Poepsel et al. [48] evaluate Condor on several representa-
tive jobs one real and four synthetic datasets and compared
to one-off implementations of the count-min sketch and
Yahoo! DataSketches [70]. In the case of one-off custom
implementations, Condor performs better and even main-
tains high performance for a large number of concurrent
windows. Secondly, Condor’s sketch libraries are designed
to support high parallelism applications and results prove
they scale linearly with the number of cores in the system
which is not the case for Yahoo! DataSketches. This also
holds for the other provided synopses and evaluation oper-
ators. In summary, the framework allows high-throughput
for parallel synopsis maintenance while keeping the same
accuracy as centralized techniques.

Traub et al. [64] show that the environment I2 signifi-
cantly reduces the number of processed and transferred data
points. It supports visualizing high-bandwidth data streams
without a reduction of the quality.

In experiments of Jugel et al. [32], the M4 aggregation
technique is compared with line simplification techniques
and common naive approaches (e.g., averaging, sampling,
rounding) on real-world data sets. Measuring the visualiza-
tion quality shows that M4 achieves error-free visualiza-
tions. Furthermore, it provides a reduction of data volume
by two orders of magnitude and a decrease of latency by
one order of magnitude.

9 FutureWork

There are several directions for future research on efficient
algorithms for window aggregations and windowed stream

K



106 Datenbank Spektrum (2022) 22:99–107

joins on distributed stream processing systems. Window
concepts become more complex since new window mea-
sures have been introduced (e.g., delta-based [23], multi-
measure [14, 23, 66]) and novel window types have been
proposed (e.g., Frames [25], window policies [23], snap-
shot windows [4, 24]). Window aggregation and windowed
joins algorithms have to adapt to such sophisticated window
schemes. Intra-window join algorithms have to consider
and dynamically adjust to various factors such as workload,
metrics, and hardware [76].

The presented optimization techniques are orthogonal
and can be combined to enhance multiple aspects in a sys-
tem. Future stream processing systems have to include mul-
tiple optimization techniques on operator, query, hardware,
and application level to meet the high-throughput and low-
latency requirements of modern streaming applications. We
are working towards this goal at BIFOLD by developing the
NebulaStream System [73, 74].

10 Conclusion

Researchers at TU Berlin and BIFOLD have conducted var-
ious research related to windowed operations on stream-
ing systems. We surveyed these works covering efficient
window aggregations, modern hardware optimizations, dis-
tributed stream processing approaches, and applications.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Abadi DJ, Carney D, Cetintemel U, Cherniack M, Convey C,
Lee S, Stonebraker M, Tatbul N, Zdonik S (2003) Aurora: a new
model and architecture for data stream management. VLDB J
12(2):120–139

2. Abadi DJ, Ahmad Y, Balazinska M, Cetintemel U, Cherniack M,
Hwang J-H, Lindner W, Maskey A, Rasin A, Ryvkina E et al
(2005) The design of the borealis stream processing engine. CIDR
5(2005):277–289

3. Akidau T, Bradshaw R, Chambers C et al (2015) The dataflow
model: A practical approach to balancing correctness, latency, and

cost in massive-scale, unbounded, out-of-order data processing.
PVLDB 8(12):1792–1803

4. Ali M, Chandramouli B, Goldstein J et al (2011) The extensibility
framework in microsoft streaminsight. In: ICDE (IEEE)

5. Arasu A, Widom J (2004) Resource sharing in continuous sliding-
window aggregates. VLDB 4:336–347

6. Bartnik A, Del Monte B, Rabl T et al (2019) On-the-fly reconfig-
uration of query plans for stateful stream processing engines. In:
BTW 2019

7. Benson L, Rabl T (2022) Darwin: Scale-in stream processing. In:
CIDR

8. Benson L, Grulich PM, Zeuch S et al (2020) Disco: Efficient dis-
tributed window aggregation. In: EDBT

9. Bifet A, Gavaldà R (2007) Learning from time-changing data with
adaptive windowing. In: SIAM SDM

10. Bou S, Kitagawa H, Amagasa T (2018) Cbix: Incremental sliding-
window aggregation for real-time analytics over out-of-order data
streams

11. Bou S, Kitagawa H, Amagasa T (2020) L-bix: incremental sliding-
window aggregation over data streams using linear bidirectional ag-
gregating indexes. Knowl Inf Syst 62(8):3107–3131

12. Bou S, Kitagawa H, Amagasa T (2021) Cpix: Real-time analytics
over out-of-order data streams by incremental sliding-window ag-
gregation. In: IEEE TKDE

13. Carbone P, Katsifodimos A, Ewen S et al (2015) Apache flink™:
Stream and batch processing in a single engine. In: IEEE CS

14. Carbone P, Traub J, Katsifodimos A et al (2016) Cutty: Aggregate
sharing for user-defined windows. In: CIKM

15. Chandramouli B, Goldstein J, Barnett M, DeLine R, Fisher D,
Platt JC, Terwilliger JF, Wernsing J (2014) Trill: A high-perfor-
mance incremental query processor for diverse analytics. PVLDB
8(4):401–412

16. Chandramouli B, Goldstein J, Barnett M et al (2014) The trill in-
cremental analytics engine. Tech. rep., Microsoft Research

17. Chandrasekaran S, Cooper O, Deshpande A et al (2003) Tele-
graphcq: Continuous dataflow processing. In: SIGMOD

18. Chen J, DeWitt DJ, Tian F et al (2000) Niagaracq: A scalable con-
tinuous query system for internet databases. In: SIGMOD

19. Chintapalli S, Dagit D, Evans B et al (2016) Benchmarking stream-
ing computation engines: Storm, flink and spark streaming. In:
IPDPSW (IEEE)

20. DelMonte B, Zeuch S, Rabl T et al (2020) Rhino: Efficient manage-
ment of very large distributed state for stream processing engines.
In: SIGMOD

21. Del Monte B, Zeuch S, Rabl T et al (2022) Rethinking stateful
stream processing with rdma. In: SIGMOD (to appear)

22. Elseidy M, Elguindy A, Vitorovic A et al (2014) Scalable and adap-
tive online joins. VLDB 7(6):441–452

23. Gedik B (2014) Generic windowing support for extensible stream
processing systems. Softw Pract Exp 44(9):1105–1128

24. Grabs T, Schindlauer R, Krishnan R et al (2009) Introducing mi-
crosoft streaminsight (Tech. rep.)

25. Grossniklaus M, Maier D, Miller J et al (2016) Frames: Data-driven
windows. In: DEBS (ACM)

26. Grulich PM, Saitenmacher R, Traub J et al (2018) Scalable detec-
tion of concept drifts on data streams with parallel adaptive win-
dowing. In: EDBT

27. Grulich PM, Traub J, Breß S et al (2019) Generating reproducible
out-of-order data streams. In: DEBS

28. Grulich PM, Sebastian B, Zeuch S et al (2020) Grizzly: Efficient
stream processing through adaptive query compilation. In: SIG-
MOD

29. Grulich PM, Zeuch S, Markl V (2021) Babelfish: Efficient execu-
tion of polyglot queries. PVLDB 15(2):196–210

30. Hirzel M, Schneider S, Tangwongsan K (2017) Tutorial: Sliding-
window aggregation algorithms. In: DEBS

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Datenbank Spektrum (2022) 22:99–107 107

31. Hoffmann M, Lattuada A, McSherry F, Kalavri V, Liagouris J,
Roscoe T (2019) Megaphone: Latency-conscious state migration
for distributed streaming dataflows. PVLDB 12(9):1002–1015

32. Jugel U, Jerzak Z, Hackenbroich G, Markl V (2014) M4: a visual-
ization-oriented time series data aggregation. PVLDB 7(10):797–808

33. Kang J, Naughton JF, Viglas SD (2003) Evaluating window joins
over unbounded streams. In: ICDE (IEEE)

34. Karimov J, Rabl T, Markl V (2019) Ajoin: ad-hoc stream joins at
scale. PVLDB 13(4):435–448

35. Karimov J, Rabl T, Markl V (2019) Astream: Ad-hoc shared stream
processing. In: SIGMOD

36. Karnagel T, Habich D, Schlegel B et al (2013) The hells-join: a het-
erogeneous stream join for extremely large windows. In: DaMoN

37. Koliousis A, Weidlich M, Castro Fernandez R, Wolf AL, Costa P,
Pietzuch P (2016) Saber: Window-based hybrid stream processing
for heterogeneous architectures. In: SIGMOD. p 555–569

38. Kreps J (2016) Introducing kafka streams: Stream processing made
simple (Confluent Blog, March)

39. Krishnamurthy S, Wu C, Franklin MJ (2006) On-the-fly sharing for
streamed aggregation. In: SIGMOD

40. Li J, Maier D, Tufte K, Papadimos V, Tucker PA (2005) No pane,
no gain: efficient evaluation of sliding-window aggregates over data
streams. SIGMOD Rec 34(1):39–44

41. Li J, Maier D, Tufte K et al (2005) Semantics and evaluation tech-
niques for window aggregates in data streams. In: SIGMOD

42. Li J, Tufte K, Shkapenyuk V, Papadimos V, Johnson T, Maier D
(2008) Out-of-order processing: a new architecture for high-perfor-
mance stream systems. PVLDB 1(1):274–288

43. Miao H, Park H, Jeon M et al (2017) StreamBox: Modern stream
processing on a multicore machine. In: USENIX

44. Michalke A, Grulich PM, Lutz C et al (2021) An energy-efficient
stream join for the internet of things. In: Proceedings of the 17th
International Workshop on Data Management on New Hardware
(DaMoN 2021)

45. Murray DG, McSherry F, Isaacs R et al (2013) Naiad: a timely
dataflow system. In: Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles

46. Najafi M, Sadoghi M, Jacobsen HA (2016) Splitjoin: A scalable,
low-latency stream join architecture with adjustable ordering preci-
sion. In: ATC

47. Noghabi SA, Paramasivam K, Pan Y, Ramesh N, Bringhurst J,
Gupta I, Campbell RH (2017) Samza: stateful scalable stream
processing at linkedin. PVLDB 10(12):1634–1645

48. Poepsel-Lemaitre R, Kiefer M, von Hein J, Quiané-Ruiz J-A,
Markl V (2021) In the land of data streams where synopses are
missing, one framework to bring them all. PVLDB 14(10):1818–1831

49. Roy P, Teubner J, Gemulla R (2014) Low-latency handshake join.
PVLDB 7(9):709–720

50. Shahvarani A, Jacobsen HA (2020) Parallel index-based stream join
on a multicore cpu. In: SIGMOD

51. Shein AU, Chrysanthis PK, Labrinidis A (2017) Flatfit: Accelerated
incremental sliding-window aggregation for real-time analytics. In:
SSDBM

52. Shein AU, Chrysanthis PK, Labrinidis A (2018) Slickdeque: High
throughput and low latency incremental sliding-window aggrega-
tion. In: EDBT

53. Tangwongsan K, Hirzel M, Schneider S, Wu K-L (2015) General
incremental sliding-window aggregation. PVLDB 8(7):702–713

54. Tangwongsan K, Hirzel M, Schneider S (2017) Low-latency slid-
ing-window aggregation in worst-case constant time. In: DEBS, pp
66–77

55. Tangwongsan K, Hirzel M, Schneider S (2019) Optimal and general
out-of-order sliding-window aggregation. PVLDB 12(10):1167–
1180

56. Teubner J, Mueller R (2011) How soccer players would do stream
joins. In: SIGMOD

57. Theodorakis G, Koliousis A, Pietzuch P et al (2018) Hammer slide:
work-and cpu-efficient streaming window aggregation

58. Theodorakis G, Koliousis A, Pietzuch P et al (2020) Lightsaber: Ef-
ficient window aggregation on multi-core processors. In: SIGMOD

59. Theodorakis G, Pietzuch PR, Pirk H (2020) Slideside: A fast incre-
mental stream processing algorithm for multiple queries. In: EDBT

60. Torres J, Armbrust M, Das T et al (2018) Introducing low-latency
continuous processing mode in structured streaming in apache
spark 2.3. Databricks Blog

61. Toshniwal A, Taneja S, Shukla A et al (2014) Storm@ twitter. In:
SIGMOD

62. Traub J (2019) Demand-based data stream gathering, process-
ing, and transmission. PhD thesis, Technische Universität Berlin.
https://www.depositonce.tu-berlin.de/handle/11303/10519. Ac-
cessed 25.01.2022

63. Traub J (2021) Demand-based data stream gathering, processing,
and transmission: efficient solutions for real-time data analytics in
the Internet of things. Books on Demand, Norderstedt

64. Traub J, Steenbergen N, Grulich PM et al (2017) I2: Interactive
real-time visualization for streaming data. In: EDBT

65. Traub J, Grulich P, Cuéllar AR et al (2018) Scotty: Efficient window
aggregation for out-of-order stream processing. In: ICDE

66. Traub J, Grulich P, Cuéllar AR et al (2019) Efficient window aggre-
gation with general stream slicing. In: EDBT

67. Traub J, Hülsmann J, Breß S et al (2019) SENSE: Scalable data ac-
quisition from distributed sensors with guaranteed time coherence.
arXiv preprint arXiv, vol 191204648

68. Traub J, Grulich PM, Cuéllar AR et al (2021) Scotty: General and
efficient open-source window aggregation for stream processing
systems. In: TODS

69. Traub J, Kaoudi Z, Quiané-Ruiz J-A, Markl V (2021) Agora: Bring-
ing together datasets, algorithms, models and more in a unified
ecosystem [vision]. SIGMOD Rec 49(4):6–11

70. Yahoo! (2020) Sketches library from Yahoo! https://datasketches.
apache.org/. Accessed 12.04.2022

71. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A,
Meng X, Rosen J, Venkataraman S, Franklin MJ et al (2016)
Apache spark: a unified engine for big data processing. Commun
ACM 59(11):56–65

72. Zeuch S, Monte BD, Karimov J, Lutz C, Renz M, Traub J, Breß S,
Rabl T, Markl V (2019) Analyzing efficient stream processing on
modern hardware. PVLDB 12(5):516–530

73. Zeuch S, Chaudhary A, Monte B et al (2020) The NebulaStream
Platform: Data and application management for the internet of
things. In: CIDR

74. Zeuch S, Zacharatou ET, Zhang S, Chatziliadis X, Chaudhary A,
Del Monte B, Giouroukis D, Grulich PM, Ziehn A, Mark V (2020)
NebulaStream: Complex analytics beyond the cloud. Open J Inter-
net Things 6(1):66–81

75. Zhang C, Akbarinia R, Toumani F (2021) Efficient incremen-
tal computation of aggregations over sliding windows. In: ACM
SIGKDD

76. Zhang S, Mao Y, He J et al (2021) Parallelizing intra-window join
on multicores: An experimental study. In: SIGMOD

K

https://www.depositonce.tu-berlin.de/handle/11303/10519
https://datasketches.apache.org/
https://datasketches.apache.org/

	Algorithms for Windowed Aggregations and Joins on Distributed Stream Processing Systems
	Abstract
	Introduction
	Related Work
	Stream Slicing
	Algorithms for Optimizations on Modern Hardware
	Parallel and Distributed Stream Processing
	Systems Integration
	Applications
	Evaluation Summary
	Stream Slicing
	Algorithms for Optimizations on Modern Hardware
	Parallel and Distributed Stream Processing
	Systems Integration
	Applications

	Future Work
	Conclusion
	References


