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Abstract
In this paper, we present the first comprehensive survey of window types for stream processing systems which have been
presented in research and commercial systems.We cover publications from themost relevant conferences, journals, and system
whitepapers on stream processing, windowing, and window aggregation which have been published over the last 20 years.
For each window type, we provide detailed specifications, formal notations, synonyms, and use-case examples. We classify
each window type according to categories that have been proposed in literature and describe the out-of-order processing. In
addition, we examine academic, commercial, and open-source systems with respect to the window types that they support.
Our survey offers a comprehensive overview that may serve as a guideline for the development of stream processing systems,
window aggregation techniques, and frameworks that support a variety of window types.

Keywords Survey · Window types · Window aggregation · Stream processing systems · Out-of-order processing

1 Introduction

Modern real-time analytic workloads require the execution
of complex queries over continuous, unordered, and high-
velocity data streams [98]. To handle the unbounded nature of
data streams, windowing constitutes a fundamental concept
in stream processing [4]. Windowing divides streams into
windows (i.e., finite subsets of data), which is a prerequisite
for operators, such as window aggregations or joins [41]. The
window type determines how to split the stream intowindows
and which tuples to include. This impacts the window con-
tent, changes the result of windowed operations, and enables
different application scenarios [76].

Over the last years, researchers and practitioners pro-
posed a wide range of different window types to address
a variety of use-cases [29]. For instance, window types with
a fixed-size (e.g., tumbling windows, sliding windows) do
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not address all requirements of complex stream process-
ing applications. Such applications often require data-driven
windows which dynamically adapt depending on data char-
acteristics (e.g., punctuation-based windows [41,56], session
windows [4,92,93], Frames [50]). These different window
types are described across a large number of publications
with different notations, specifications, and synonyms. This
makes the adoption and development of stream process-
ing systems (SPSs) for end-users, system developers, and
researchers very challenging. System developers strive for
general-purpose SPSs that support a wide range of window
types and workloads. However, they are confronted with a
large number of different windowing concepts, which they
have to adapt to modern system features such as out-of-
order stream processing. As a result, system developers have
to re-implement window types leading to unclear semantic
differences among systems. Additionally, researchers inves-
tigate techniques for the efficient handling of windowed
operations [57]. Due to the variety of different window
types, they often focus only on specific windowing seman-
tics, which limits the applicability of their work [28] and
leads to different performance profiles of window types.
Consequently, end-users have to learn and resolve contradict-
ing semantics and implementations among different systems,
which increases the time to master new systems.

Despite the variety of window types and publications
on the topic of windowing, there exists, to the best of our
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knowledge, no exhaustive survey which collects, studies,
and characterizes the different window types. Our goal is
to provide an overview of all window types to support
the work of system developers, researchers, and end-users
of SPSs. To this end, we reviewed 23 publications, which
introduce different window types (Sect. 4). Furthermore, we
included the documentations of 17 stream processing sys-
tems: Amazon Kinesis Data Analytics [7], Google Cloud
Dataflow [46], IBM Streams [59], Microsoft Azure Stream
Analytics [71], Microsoft StreamInsight [6,49], Borealis [1],
Naiad [74], Trill [31,32], STREAM [16], TelegraphCQ [33],
Apache Beam [4,13], Flink [27], Samza [75], Spark [89,96],
Storm [90], and Heron [39,64]. Across these resources, we
have noticed a variety of different terminologies, definitions,
and classifications. To this end, we have derived 16 window
types for which we unify all specifications.

In this paper, we provide the first unified survey ofwindow
types for stream processing systems. We describe in detail
how eachwindow type is specified, provide formal notations,
show visualizations, and give use-case examples.We explain
out-of-order processing for each window type andmake sug-
gestions where this is not covered in literature. Due to many
inconsistencies in notations across literature, we address syn-
onyms and contradictory definitions. We provide overview
tables for all window types and examined systems, which
serve as an entry point for researchers and practitioners.
The contributions of this paper are as follows:

1. We provide a thorough survey ofwindow types for aggre-
gation in SPSs.

2. We classify all window types based on categories used in
literature: context-awareness, window measures, deter-
minism, order characteristics (FIFO vs. non-FIFO), over-
lapping vs. non-overlapping, fixed- vs. variable-size.

3. For each window type, we provide a formal notation,
use-cases, investigate how they can be combined with
out-of-order processing, and list the synonyms.

4. We provide an overview of SPSs and their support for
different window types.

The remainder of this paper is structured as follows. First,
we discuss foundational background on stream processing
(Sect. 2). Then, we introduce classifications, which enable
a unified specification of the window types (Sect. 3). We
describe our methodology (Sect. 4) and present specifica-
tions of the 16 different window types (Sect. 5). We examine
systems and window aggregation implementations (Sect. 6).
Finally, we discuss related work (Sect. 7).

2 Background

We now introduce the preliminaries for this survey. We
define stream processing (Sect. 2.1), discuss the notion of
time (Sect. 2.2), present the concept of window aggregation
(Sect. 2.3), describe out-of-order processing (Sect. 2.4), and
examine common aggregation techniques (Sect. 2.5).

2.1 Stream processing

The real-time analysis of continuously produced data is a
key requirement ofmodern, low-latency applications. Stream
processing fulfills this requirement, enabling many applica-
tions in different areas such as machine monitoring, stock
market trading, and communication technology. Data for
such applications is generated by sources which are, for
instance, software and hardware sensors, transactions, or
clicks [9]. These sources produce data continuously, result-
ing in an unbounded data set termed data stream. They
push tuples to stream processing systems (SPSs) which are
execution engines that continuously process incoming data
streams to provide real-time information and responses to
long-standing queries (Table 1).

Formally, a data stream s̄ consists of a sequence of
tuples [29].A tuple (also calleddata item [58], or record [27])
represents the unit of data that is used for communication
within stream processing systems and applications [58]. It
may contain a sequence of attribute values which describe
an entity [56]. T = 〈e1, e2, . . . , eN 〉 denotes the schema
of the tuples represented as set of elements of finite arity
N . The set of sequences of tuples, that are derived from
this schema, is formally expressed as Seq(T ). The notation
sposi tion(x) = s̄(x) defines a tuple at position x in the stream
s̄ ∈ Seq(T ), where posi tion ∈ {te, tp, ti , count, . . . }.
The position of a tuple can be defined based on differ-
ent times (e.g., event-time te, processing-time tp), count of
tuples, or other arbitrary advancing measures. Additionally,
sposi tion(x).Ai describes attribute Ai of the tuple at position
x .

2.2 Notion of time

The concept of time plays an important role in SPSs.
For instance, time is essential to divide streams into time-
based windows (Sect. 2.3). In general, we can differentiate
between three time domains, event-time, processing-time,
and ingestion-time [4,27]. Event-time te specifies the time
at which a tuple was generated by a source. This timestamp
is attached to the produced tuple and does not change [4].
The processing-time tp refers to the time the system-clock
has, when the system or the operator processes the tuple [4].
Ingestion-time ti denotes the time at which a tuple arrives in
the system [27]. Timestamps of every time domain aremono-
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Table 1 Notations Formal notation Explanation

T = 〈e1, e2, . . . , eN 〉 Tuple schema: set of elements of finite arity N

s̄ ∈ Seq(T ) Stream

sposi tion(x) = s̄(x) Tuple at position x of stream s̄

posi tion ∈ {te, tp, ti , count, . . . } Different positions (Sect. 2.2, Section3.3)

s̄([a, b[) = {sposi tion(x) | x ∈ [a, b[} Substream containing tuples at positions within interval

wi = s[bi , ei [ Window i

bi Beginning of window i

ei End of window i

p Window parameter (e.g., size, slide, timeout)

�y : ste (y) ≥ ste (x) ∧ y < x Tuple sposi tion(x) is in-order

∃y : ste (x) < ste (y) ∧ y < x Tuple sposi tion(x) is out-of-order

tonically increasing. Other time definitions could be possible
(e.g., sending time, receiving time).

2.3 Windows and window aggregation

Windows separate the unbounded stream into bounded sub-
sets (i.e.,windows) dependingon awindow type (e.g., sliding,
tumbling, or session window). The tuples contained in each
window are aggregated based on a window function (also
called aggregate function [93]), typically to derive some
metric (e.g., sum, max, average) [51]. Window aggrega-
tion constitutes an essential technique for SPSs to handle
continuous streams online and to produce timely responses.
Aggregations can be differentiated in temporal and spatial.
Temporal aggregation refers to a summary of values over
time, while a spatial aggregation summarizes values from
different sources [91]. In this survey, we focus on temporal
aggregations over data streams. Window types are different
methods of separating the stream into windows which affect
the result of the aggregation.

In a formal notation, intervals of the form [a, b[, with
a, b ∈ R and a < b, are used to depict finite subse-
quences from this conceptually infinite stream s̄. This interval
ranges from a to b (only including a). The notation s̄([a, b[)
(short s[a, b[) describes a substream that contains all tuples
at positions within the interval. This is formally described
with s̄([a, b[) = {sposi tion(x) | x ∈ [a, b[}. A window is
described as a substream wi = s[bi , ei [, where bi is the
beginning and ei the end of the window i . The beginning and
ending of awindow are calledwindow edges [94] (also called
window bounds [76] or window boundaries [41]). We define
the positions of the edges in different windowmeasures, such
as event-time or tuple count (Sect. 3.3).

Example: w1 = s[3, 5[ describes window 1 with b1 = 3
and e1 = 5. w1 includes every tuple sposi tion(x) with 3 ≤
x < 5. In event-time, w1 spans the time from tuple ste (3) at
timestamp 3 until tuple ste(5) at timestamp 5, excluding tuple

Fig. 1 Out-of-order tuples

ste(5). Every tuple that arrives before tuple ste(5) belongs to
w1 (e.g., a tuple ste (4.9) at timestamp 4.9). Tuple ste(5) at
position 5 is included, for example, in the subsequentwindow
w2 = s[5, 8[. If w1 = s[3, 5[ is defined in tuple counts, it
contains all tuples between scount (3) and scount (5), excluding
the tuple at count 5.

2.4 Out-of-order processing

This section summarizes existing literature on out-of-order
stream processing (further details can be found in Aki-
dau et al. [4], Carbone et al. [27], Li et al. [69], Traub et
al. [92–94]). The requirement to process tuples in the cor-
rect event-time order leads to a distinction between in-order
streams and out-of-order streams. A stream is called in-
order, if all tuples arrive in the correct order according to
their event-timestamps [4,69]. We formally define that tuple
sposi tion(x) is in-order, if �y : ste(y) ≥ ste(x) ∧ y < x [94].
However, streams that are perfectly event-time ordered are
unusual, since tuples are often produced by a variety of dis-
tributed sources. Due to network congestion, transmission
delay, or sensor failure, in practice, tuples arrive unordered
with respect to their event-timestamps [93]. These out-of-
order tuples (or late tuples [69]) are the reason why streams
are out-of-order. A tuple is considered out-of-order, if at
least one tuple before it has a greater event-time [92]. We
formally define that tuple sposi tion(x) is out-of-order, if
∃y : ste(x) < ste (y) ∧ y < x . Fig. 1 illustrates a data
stream ordered according to processing-time, i.e., it shows
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the tuples in the order in which they arrive. The stream is out-
of-order because the tuples with event-timestamps 4 and 15
are out-of-order. The stream below illustrates where the cor-
rect positions of the out-of-order tuples are when the stream
is ordered by event-time.

Conceptually, SPSs can only trigger the computation of a
window aggregate, if they can guarantee that all data has been
seen and no further out-of-order tuple will arrive. This leads
to a delay of the window aggregation output. To avoid unnec-
essary long delays, watermarks are inserted into the stream
which act as measures of progress [27]. Watermarks include
a timestamp t that signals the systemhow long towait for out-
of-order tuples that have a timestamp lower than t . As a result,
some operators end the waiting for out-of-order tuples, when
they receive a watermark [27]. Then, they trigger the compu-
tation of the window aggregate for every window that ended
before the watermark and output the aggregate. We formally
define this as tr igger(wi )∀wi | ei < watermark(t).

Systems apply different approaches to handle out-of-order
tuples. In general, we can differentiate between three strate-
gies to handle out-of-order tuples. First, the system can
process the tuples in the order of arrival and ignore out-of-
order tuples (e.g., Aurora [2] when Slack = 0). Second,
systems can buffer all tuples, sort them according to their
event-timestamps, and then apply the window operator (e.g.,
Borealis [1]). Third, the window operator handles out-of-
order tuples [69], which is also implemented in Dataflow
systems [4] (e.g., Apache Flink [27]).

In the last case, the window operator handles in-order
tuples at the time they arrive to avoid processing delays. Pre-
computing intermediate results provides a lower latency for
outputting the aggregation results (Sect. 2.5). The window
operator has to insert the out-of-order tuples into the cor-
rect window(s) with respect to their event-time in the stream.
This requires a recomputation of their window aggregates;
otherwise, the aggregation results would not be equal for the
same input stream. Depending on the aggregation operation,
window aggregates can be incrementally updated (e.g., by
incrementally adding a value to a sum) or have to be recom-
puted from scratch (e.g., concat strings [83]). Additionally,
inserted tuples may cause a change of the edges of one or
more windows that were already created in the past. For
instance, if a window holds 10 tuples and an out-of-order
tuple is inserted, there are 11 tuples in the window lead-
ing to a violation of the window specification. As a result,
the window operator has to shift one tuple to the next win-
dow.Consequently, out-of-order tuples require special care in
processing, and handling out-of-order streams increases the
complexity of window aggregation [57,67,83,93]. We will
describe out-of-order processing for different window types
in Sect. 5.

2.5 Window aggregation optimization techniques

Windows affect the performance of SPSs since computa-
tions must be performed on the contained tuples to obtain
aggregation results. Large windows cause inefficiencies as a
result of high memory footprints and long response times,
since all tuples in a window have to be maintained and
then iterated to compute an aggregate. Overlapping windows
partly include the same tuples leading to redundant compu-
tations. Thus, research has proposed several techniques to
optimize window aggregation (e.g., FlatFAT [84], Pairs [63],
Cutty [29], Scotty [94]). Across this work, we can identify
two fundamental optimization techniques: partial-window-
aggregation, and aggregate sharing.

Partial window aggregation separates an aggregate into
intermediate results called partial aggregates [29]. A new
partial aggregate is computed through combining two par-
tial results [84]. The final aggregation result can be obtained
with just a few last aggregation steps using the pre-computed
partial aggregates. Depending on the type of aggregation, a
technique may store just the partial aggregates for each win-
dow instead of keeping all tuples [93]. With each arriving
tuple, a partial aggregate can be incrementally updated [28].
For instance, the values of the tuples are incrementally added
to a sum every time a new tuple arrives. Partial window
aggregation resolves inefficiencies by reducing the memory
footprint as well as the latency.

The approach of aggregate sharing handles the over-
lap of subsequent windows from one window query as
well as the overlap of concurrent windows from multiple
queries [29]. The partial aggregates are shared among over-
lapping windows. For the output of each window, several
partial aggregates are combined to calculate the final aggre-
gate [63]. This prevents redundant computations.

3 Classification

In this section, we classify window types according to
several categories. These categories allow for grouping win-
dow types with respect to performance characteristics and
implementation requirements. We discuss the differentiation
between fixed-size and variable-size (Sect. 3.1), overlapping
and non-overlapping (Sect. 3.2), windowmeasure (Sect. 3.3),
and FIFO vs. non-FIFO (Sect. 3.4).We describe the approach
of Carbone et al. [29] that introduced deterministic and non-
deterministicwindow types (Sect. 3.5). Li et al. [67] classified
window types with respect to the required processing context
(Sect. 3.6). We summarize all categories in Table 2 and use
them to classify the different window types in Sect. 5.
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Table 2 Categories

Category Differentiation

Fixed-size vs. variable-size Fixed-size

Variable-size

Overlapping

Overlapping vs. non-overlapping Non-overlapping

Window measure Time-based

Count-based

Multi-dimensional

FIFO vs. non-FIFO FIFO

Non-FIFO

Deterministic vs. non-deterministic Deterministic

Non-deterministic

Context-awareness Context-free (CF)

Forward-context free (FCF)

Forward-context aware (FCA)

Fig. 2 Example for fixed-size windows

Fig. 3 Example for variable-size windows

3.1 Fixed-size vs. variable-size

The first category we consider is window size, adopting the
terms fixed-size and variable-size from Bifet et al. [21]. A
window is per definition a bounded subset of the stream.
Consequently, its size (also called length or range [28]) can
be quantified in different metrics such as time or number of
tuples. For example, a window can have a size of 10 s, so
that it includes all tuples within a 10s timeframe. Formally,
wi = [bi , ei [ has a size of 10, if ei − bi = 10.

The size of some window types is chosen a priori and
defined in the window query. Tuples are then inserted into
each window until they reach the size that is specified. Those
window types are referred to as fixed-sized, since their size
does not change while they are applied onto the stream. In
this case, every consecutive window has the same size. For
example, if we define a size of 10 s for a window type, every
window has a size of exactly 10s as shown in Fig. 2. This
10 s size does not change throughout the application of the
window.

If a window type does not require a size to be specified
beforehand, the window size is adapted dynamically, and is
classified as variable-sized. Every window has a different
size which may be based on some property of the stream
or values of a specified attribute of the tuples. Tuples are
inserted into the windows until some criterion is fulfilled.
For variable-sized window types, we do not define a value
for the size. For example, in Fig. 3, a window ends at every
tuple with value 3 (punctuation).

3.2 Overlapping vs. non-overlapping

Wefurther differentiate intooverlapping andnon-overlapping
window types. The logic of awindow type can lead to an over-
lap of individual windows. For example, the configuration of
the sliding window (Sect. 5.2) is specified by the window
size and by another parameter called slide (also called hop
size [76]). The slide parameter determines how often a new
window starts [51]. If it is smaller than the window size,
the next window starts before the first one ended. Then, the
subsequent windows are overlapping. The smaller the slide,
the more frequently a new window starts. Successive win-
dows of overlappingwindow types partially contain the same
tuples. Hence, one tuple is taken into account in the compu-
tation of more than one window aggregation. Formally, two
windows wi , w j | j = i + 1 overlap, if bi ≤ b j and
b j < ei . In this notation, two overlapping windows are for
example w1 = [0, 10[ and w2 = [5, 10[, or w1 = [0, 10[
and w2 = [2, 3[.

On the other hand, if the slide parameter is not defined,
equal or greater to the window size, the window type is non-
overlapping. The successor instance starts after the previous
one ended. Thus, one tuple is included in exactly onewindow
aggregation. For two windows wi , w j | j = i + 1, this can
be notated as ei ≤ b j . For instance, the two windows w1 =
[0, 5[ and w2 = [5, 10[, or w1 = [0, 5[ and w2 = [7, 12[ do
not overlap. Besides the slide parameter, other window types
can also lead to overlapping windows.

3.3 Windowmeasure

There exist different possibilities to specify window param-
eters such as size and slide which are called window mea-
sures [51]. We distinguish into time-based measures (also
called logical measurement unit [76]), arbitrary advancing
measures, and count-based measures (also called physical
measurement unit [76]). Time-based measures determine
the window parameter as a time interval such as minutes
or seconds. For instance, a window type can be specified
by time-based window size of 10 s. In this case, each win-
dow has a size of exactly 10s. Depending on the use of
event-time or processing-time for this measure, tuples may
belong to different windows. Typically, windows are defined
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based on the event-time [4]. However, timestamps do not
have to be a time specification. They may also represent
different arbitrary advancing measures such as a transac-
tion IDs, kilometers traveled, or invoice numbers [93]. Since
these measures advance just as timestamps, window types
with such measures can be processed the same way as time-
based window types. For simplicity, we will use the term
time-based throughout the paper which will include these
advancing measures. In case of count-based measures (also
called tuple-based [67] or tuple-driven [23]), windowparam-
eters are specified by a number of tuples. For example, a
window type can be determined by a count-based window
size of 100 tuples. The tuples included in one window are
counted and the specification is fulfilled once the counter
equals 100 tuples. Count-based measures are challenging
when handling out-of-order tuples. In an event-time ordered
stream, a tuple that arrives out-of-order changes the count of
all consecutive tuples that have a greater event-time than the
out-of-order tuple, affecting the window aggregates and win-
dow edges [93]. Carbone et al. also defined window types in
the multi-dimensional space of different measure (e.g., com-
bining the time-based and count-based measure) [29].

3.4 FIFO vs. non-FIFO window types

Window types are also differentiated into FIFO and non-
FIFO based on the strategy of inserting and removing their
tuples. In FIFO principle, a tuple arrives and is inserted into
the window. This tuple has the most recent timestamp of
tuples in the window until more tuples arrive [57]. Eventu-
ally, some have to be removed to keep the window bounded.
The tuple that was inserted first into the window then repre-
sents the oldest tuple and is the first to be evicted from it [82].
Such a FIFO window type essentially matches a queue [82].
For non-FIFO window types, tuples may be inserted and
removed in a different order. For instance, not the oldest
tuple, but a tuple with a timestamp right in the middle might
be removed. An example for a non-FIFO window type is
the attribute-delta policy for sliding windows proposed by
Gedik [41] (Sect. 5.13).

3.5 Deterministic vs. non-deterministic window
types

Carbone et al. [29] differentiated between deterministic and
non-deterministicwindow types. The term deterministic cor-
responds to a window type, “if at the time that it processes
a [tuple] it can decide whether that [tuple] marks (i) the
beginning of a window or (ii) the end of a window” [e.g.,
tumbling windows (Sect. 5.1), sliding windows (Sect. 5.2),
punctuation-based windows (Sect. 5.5)] [29]. At the end of a
window, results may not be triggered immediately depend-
ing on whether the system waits for out-of-order tuples

Fig. 4 Backward- and forward-context by Li et al. [67]

(Sect. 2.4). For instance, a count-based tumbling window
with a fixed-size of 100 tuples is deterministic. The oper-
ator maintains an internal counter that keeps track of the
number of tuples in a window. When a tuple arrives and the
counter is below 100, that the operator knows that this tuple
belongs to the current window. If the counter is at 100, it is
immediately known that the current window ends and a new
window starts. In contrast, “non-deterministic windows can-
not declare immediately whether a record begins a windows
or not, i.e., they need to examinemore [tuples] in order to take
such a decision” [e.g., slide-by-tuple windows (Sect. 5.8),
frames (Sect. 5.9), multi-type windows (Sect. 5.13)] [29].
Assume a multi-type window that outputs the last 10 tuples
every 5 s. If 11 tuples arrive during the 5 s, the first tuple is
not part of the window. However, this is not known immedi-
ately when this tuple arrives. The following tuples must be
processed before a decision about the beginning of the win-
dow can be made. This definition of determinism does not
refer to the deterministic aggregation of input tuples, where
tuples from different streams are processed in the correct
order according to their timestamps to ensure deterministic
window aggregation results [54,55].

3.6 Context-free, forward-context free, and
forward-context aware window types

The concept of context-awareness was introduced by Li et
al. [67]. Their approach is to classify the window types
according to the information (i.e., context or state) that
is needed to determine start and end timestamps of the
windows. They differentiate between backward-context and
forward-context (Fig. 4). “Given a tuple t, its backward-
context is information about tuples [...] before t. Forward-
context is information about tuples [...] after t” [67]. If only
backward-context is required for a window type, “it implies
that the implementation will need to maintain information
about previously arrived tuples” [67]. In such cases, the win-
dow towhich a tuple belongs can be determined immediately.
The requirement of forward-context affects the implementa-
tion, because “then information from tuples [...] after a tuple
t is required to calculate the [windows] for t. This require-
ment implies that the exact [windows] for tuple t cannot all
be determined until those tuples arrive” [67].

Based on the requirement of forward-context, Li et al.
derived three categories for window types: forward-context
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free (FCF), context-free (CF), and forward-context aware
(FCA) [67]. They “define a window [type] as FCF if the
[...] implementation does not require forward-context” [67].
The window edges are known up to the timestamp t, when all
arrived tuples up to t have been processed (e.g., punctuation-
basedwindow) [93]. “Under the FCF category, [...] a window
[type is defined] as CF [...] if the implementation of its
[window] mapping requires neither forward- nor backward-
context” [67]. The edges of all windows are known without
processing any tuples (e.g., tumbling window) [94]. The
implementation of FCA window types requires forward-
context. To map the tuples to windows and to resolve the
start and end timestamps of windows before a timestamp t,
tuples after t have to be processed (e.g., attribute-delta-based
window [41]). As defined by Carbone et al., determinis-
tic window types include the categories of CF and FCF,
while non-deterministic window types contain FCA win-
dow types [29]. Per definition, non-deterministic window
types need to examine tuples after the current tuple to deter-
mine whether this tuple starts a window. This corresponds to
forward-context.

4 Methodology

In this section, we describe our approach of literature
search, as well as the structure of the catalog.

For this survey, we extensively studied literature on
the topics of stream processing, windowing, and window
aggregation. We selected publications of the most relevant
conferences in these research fields, such as SIGMOD,
VLDB, EDBT, ICDE, DEBS, SDM SIAM, and CIKM. We
considered publications starting in 2001 and 2002, since this
was the time when the first SPSs were proposed that imple-
mented windows (e.g., TelegraphCQ [33], STREAM [16])
and the first papers were published that discussed window
types for stream processing (e.g., Gehrke et al. [42] in SIG-
MOD 2001, Guha et al. [53] in ICDE 2002, Carney et al. [30]
in VLDB 2002). Since then, a number of different window
types have been proposed in research and implemented in
various SPSs. Several publications defined window specifi-
cations and classifications of window types (e.g., Gedik [41];
Hirzel et al. [56], Li et al. [67], Patroumpas et al. [76]).While
these papers includemultiple window types, they just cover a
smaller subset of all existing window types. Gedik et al. [41]
and Hirzel et al. [56] discussed tumbling, sliding, and parti-
tioned windows and their different policies. Patroumpas et
al. [76] present fixed-band and landmark windows. Li et
al. [67] introduced the slide-by-tuple window. Additionally,
publications use synonyms for same window types or pro-
vide a different definition causing inconsistencies in the terms
used.

To our best knowledge, this paper presents the first com-
prehensive survey of window types. It provides a unified
catalog of window types, contributes to a better understand-
ing, and shows the differences between thewindow types.We
aim to present a detailed description of each window type.
This includes a textual and formal specification, synonyms,
use-case examples, classification into categories, and out-
of-order processing. Resources for finding implementation
details are covered in Sects. 6.1 and 6.2.

In Sect. 6.1, selected SPSs have been studied with regard
to the supportedwindow types.We have examined academic,
commercial, and open-source systems that are relevant,
commonly known, or widely used in research or indus-
try. This includes the academic systems TelegraphCQ [33]
and STREAM [16], since they were published in 2003 and
2004 and represent two of the earliest systems, and their
successor system Borealis [1]. Two of the more recent sys-
tems produced in research are Trill [31,32] and Naiad [74].
For commercial systems, we decided to explore the most
common ones: Amazon Kinesis Data Analytics [7], Google
Cloud Dataflow [46], IBM Streams [59], Microsoft Azure
Stream Analytics [71], and Microsoft StreamInsight [6,49].
Our catalog also covers open-source systems, since they are
widely used in business as well as in research. To this end,
we include Apache Beam [4,13], Apache Flink [27], Apache
Samza [75], Apache Spark [89,96], Apache Storm [90], and
Apache Heron [39,64]. Specific implementations of window
aggregation techniques are discussed in Sect. 6.2.

Table 3 provides a comprehensive overview of all studied
window types and acts as a summary. In Sects. 5.1 until 5.12,
we present each window type by systematically examining
the following points:

– Specification describes how the stream is split into sub-
sets of tuples by this window type and gives a formal
notation. We also provide a visualization of the window
type applied on a data stream.

– Synonyms lists the synonyms that are used in research
or system specifications for the same type of window.

– Use-case illustrates practical application of the window
type with a use-case example.

– Classification classifies the window type into the cate-
gories presented in Sect. 3.

– Out-of-order processing explains the handling of out-
of-order tuples.

5 Catalog of window types

This section presents the catalog of window types. In Table 3,
we provide an overview over all window types, followed by
the sections that include the detailed examinations of the
respective window types (Sects. 5.1–5.13).
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Table 3 Overview over window types
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Fig. 5 The time-based tumbling window with a size of 5 s

Fig. 6 The count-based tumbling window with a size of 4 tuples

5.1 Tumbling window

Specification A tumbling window splits the data stream into
consecutive subsets of tuples of equal window size (Eq. 1).
The end of one window represents the beginning of the next
window (Eq.2) [28]. Thus, the tumbling window is non-
overlapping [76]. Additionally, there is no gap between the
end of one window and the start of the next one. Each tuple
belongs to exactly one window (Eq.3) [28].

psize = ei − bi (1)

b j = ei ∀wi , w j | j = i + 1 (2)

∀sposi tion(x) ∈ s̄ ∃! wi | sposi tion(x) ∈ wi = [bi , ei [ (3)

Figure 5 shows a tumbling windowwith a time-based size
psize = 5 s. The first window w1 includes all tuples with an
event-timestamp within the window edges b1 = 0 and e1 =
5, excluding the event-timestamp 5. The second window w2

starts directly after the first one and would include a tuple at
event-time 5.

Figure 6 exemplifies a count-based tumblingwindowwith
psize = 4 tuples, where each window contains four tuples.
The window edges are indicated as the count of tuples, not
as timestamps.

Synonyms Some publications (e.g., Akidau et al. [4], Begoli
et al. [18]) or systems (e.g., Apache Beam [4,11,13], Google
Cloud Dataflow [46]) refer to the tumbling window with the
term fixed window or list it as a synonym.

The Developer’s Guide to Microsoft StreamInsight [73]
describes the tumbling window as a gapless and non-
overlapping form of the so-called hopping window. The
hopping window consists of the parameters window size and
hop size (i.e., slide). By this definition, the tumbling window
is a subform of the sliding window (Sect. 5.2).

Fig. 7 Out-of-order processing of a time-based tumbling window

Fig. 8 Out-of-order processing of a count-based tumbling window

Use-case For instance, time-based tumbling window with
a size of 24h could be used to derive a daily report on
downloads of an application. Another use-case might be a
navigation system in a car that outputs the maximum speed
every 30s to ensure that the speed limit is not exceeded. A
count-based tumbling window might be specified with a size
of 10,000 tuples. Suppose every tuple corresponds to one
click on a website. An interesting aggregation could be the
sumof clicks on a topic such as politics or sports, determining
the current interests of the users.

Classification (Table 3) The measure of the tumbling win-
dow can be time-based or count-based. Regardless, the size
is predefined and fixed. Windows do not overlap. The edges
of all windows can be computed a priori based on the size
parameter which makes this window type CF [93]. In case of
a count-based measure, the system has to maintain a counter
of tuples. Based on the computed timestamps or the counter,
it is possible to decide whether to start a new window when
a new tuple arrives. Thus, this window type is deterministic.

Out-of-order processing We summarize the implications
on the out-of-order processing which were studied in detail
by Traub et al. [93]: For time-based tumbling windows, all
timestamps of thewindow edges are fixed. Thus, tuples arriv-
ing out-of-order do not change the window edges and just
need to be inserted into the corresponding window. Figure7
shows that the window edges of w3 do not change despite an
out-of-order tuple. However, the insertion changes the result
of the window aggregation, requiring a recomputation of the
output. If the aggregate can be computed incrementally, only
partial aggregates need to be stored and individual tuples can
be dropped, even for out-of-order streams [93].

In contrast, an out-of-order tuple that is inserted into a
count-based tumbling window changes the count of all sub-
sequent tuples. Consequently, the last tuple of each window
shifts to the nextwindow.As shown in Fig. 8, the tuple ste (20)
is the 5th instead of 4th tuple in window w3 after the out-of-
order tuple ste(14) arrives. It has to be shifted to the next
window w4. Likewise, all subsequent windows change. To
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Fig. 9 The time-based sliding window with a size of 10s and a slide of
5 s

Fig. 10 The count-based sliding window with a size of 6 tuples and a
slide of 3 tuples

perform these shifts, all tuplesmust be stored. For this reason,
processing count-based tumbling windows on out-of-order
streams increases the memory footprint. Again, the aggrega-
tion results of the changed windows have to be recomputed.
However, it is possible that an out-of-order tuple arrives with
only a small delay and still belongs to the latestwindow. It can
then be inserted into the current window without requiring
any shift of tuples.

5.2 Sliding window

Specification The window size of a sliding window defines
the subset of tuples that belong to one window (Eq.4). Addi-
tionally to the size of the window, a slide parameter is defined
that determines when a new window starts (Eq. 5) [93]. This
creates the characteristic overlapping windows of the sliding
window (Eq.6). One tuple belongs to more than one window
and is therefore used in the computation of multiple window
aggregation results [28]. Windows only overlap, if the slide
has a smaller value than the size (Eq.7) [93]. Equal param-
eter values pslide = psize or pslide = 0 would produce a
tumbling window.

psize = ei − bi (4)

pslide = b j − bi ∀wi , w j | j = i + 1 (5)

bi ≤ b j ∧ b j < ei ∀wi , w j | j = i + 1 (6)

pslide < psize, pslide > 0 (7)

Figure 9 illustrates a time-based sliding window with
psize = 10 s and a pslide = 5 s.Thefirstwindoww1 includes
all tuples within the window edges b1 = 0 and e1 = 10. Due
to the slide parameter, a new window starts every 5 s. As a
result, the second window w2 starts at b2 = 5 s.

An example of a count-based sliding window is shown
in Fig. 10, where the window edges are specified in tuple
counts. The window ends when the number of tuples equals
psize = 6 tuples. Window w1 starts at count of 0 and ends
at a count of six tuples. Since a new window starts every
three tuples, the start of the subsequent window w2 is at
b2 = 3 tuples.

Synonyms A common synonym for the sliding window is
the termhoppingwindow(e.g.,MicrosoftAzureStreamAna-
lytics [71], Begoli et al. [18], Google Cloud Dataflow [46],
Microsoft StreamInsight [73]). TheMicrosoft StreamInsight
Developer’s Guide refers to the slide as the hop size and
denotes the sliding window as an overlapping hopping win-
dow [73]. However, themeaning of the termhoppingwindow
may differ from our definition of the sliding window. A hop-
ping window can be understood as a window type that has
gaps between its window instances. The window size would
then be smaller than its slide [63].Accordingly, Carbone et al.
listed the hoppingwindow additionally to the slidingwindow
and not as a synonym [29].

In Apache Kafka Streams, a sliding window can be spec-
ified using the provided hopping window [22]. As this
implementation leads to redundant computations for overlap-
ping windows, an additional sliding window implementation
was added where each window includes a distinct set of
tuples.

The definition of Microsoft Azure Stream Analytics [71]
differs from the sliding window described here. A window
ends and outputs a result, when the content of the window
changes, i.e., a tuple is inserted or evicted from the window.

Use-case A time-based slidingwindow can output awindow
of 1h that is updated everyminute, i.e., having a size of 60min
and a slide of 1min. This can be used in navigation systems to
determine the average speed per hour to compute the arrival
time.

Sliding windows can also be used for calculating moving
averages to smooth time series data and reduce noise [50].
An example is the 5 day moving average of stock market
prices. In this scenario, a count-based sliding window with
size of five tuples and a slide of one tuple can be applied to
calculate the average price every day from the daily closing
prices of the last five days.

In the fields data mining [70] and machine learning [21],
this window type is often used to determine which subset of
tuples contributes, for instance, to the data mining pattern or
the cluster partition.
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Fig. 11 Out-of-order processing of a count-based sliding window

Classification (Table 3) The sliding window can have a
count- or a time-basedmeasure.Due to the predefined param-
eters, it belongs to the category of fixed-size window types.
Asmentioned before, thewindows are overlapping.A sliding
window can be categorized as CF and deterministic, because
the start and end of the windows can be computed based on
the size and slide of thewindow. By the arrival of a new tuple,
it is clear whether a new window starts or not. This does not
require to process tuples or to maintain context.

Out-of-order processing Exactly like the tumbling window,
all window edges of the time-based sliding window are fixed.
An out-of-order tuple does not change any window edges,
but it does change the aggregation results of each window it
belongs to. Due to the overlapping windows, an out-of-order
tuple could affect several window results, whichmust then be
recomputed. If the aggregate can be computed incrementally,
only partial aggregates need to be stored and individual tuples
can be dropped, even for out-of-order streams [93].

Inserting an out-of-order tuple into a count-based window
changes the tuple count, and thereby the window edges. Fig-
ure11 shows how the last tuple of each window has to be
shifted into the next window, beginning from the window in
that the out-of-order tuple is inserted. These changes require
recomputations of the aggregations results. An out-of-order
tuple may arrive with a small delay so that it belongs to the
current window according to the counter [93]. This tuple
requires a simple insertion without any shift of tuples.

5.3 Fixed-band window

Specification The fixed-band window is defined by two
timestamps that specify the lower bound, i.e., the beginning
of the window bi , and the upper bound, i.e., the end of the
window ei (Fig. 12). This leads to a single predefinedwindow
(Eq.8). Every tuple with a timestamp that is between these
edges belongs to the window. After the stream reaches the
end timestamp, the window content remains unchanged [76].

w1 = s[b1, e1[ (8)

Synonyms The snapshot query in TelegraphCQ [33] resem-
bles the fixed-band window.

Fig. 12 The fixed-band window w1 = s[9, 22[

Fig. 13 The lower-bound landmark window

Use-case The fixed-band window could be used to mon-
itor a certain important time period, e.g., the aggregation
of air-quality data in the night of New Year’s Eve. These
are interesting values to maintain for possible comparisons
between measurements of cities and the country side, or
between the last year and next year.

Classification (Table 3) The fixed-band window belongs to
the category of fixed-sized window types, because the size
is predefined. For the same reason, this window type can be
classified as deterministic and CF.

Out-of-order Processing Out-of-order tuples do not change
the window edges of the window. If they contain a timestamp
within the window edges, they just have to be inserted into
the window.

5.4 Landmark window

Specification For a landmark window, one window edge
is fixed at a specific timestamp, the so-called landmark,
while the other edge progresses over time. Patroumpas
et al. [76] differentiate the lower-bounded landmark win-
dow and upper-bounded landmark window. For the lower-
bounded landmark window (Fig. 13), the beginning b1 of
window w1 is predefined and the end timestamp e1 moves
forward (Eq.9). The window is triggered by a punctuation in
the stream [29]. All tuples that belong to the window up to
this punctuation are aggregated and the window aggregation
result is output. A new landmark can be set after a specified
time or number of tuples, for instance, weekly, monthly, or
after 1000 tuples, which ends the current window and starts
a new window [70].

The upper-bounded landmark window is specified by end
timestamp e1, which represents a future time instant [76].
It can be formally defined by a window that starts at the
first position of the stream τ0 and ends at the specified end
timestamp e1 (Eq.10). Tuples are inserted into the window
immediately at the first timestamp τ0 when the query is
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Fig. 14 The punctuation-based window

started until the end timestamp e1 occurs.

w1 = s[b1, e1[ | ppunctuation(e1) = 1 (9)

w1 = [sposi tion(τ0), e1[ (10)

Use-case The landmark window can be used for search-
ing a maximum or minimum value within the tuples of
the stream [33]. Another application area of the landmark
window are stream clustering algorithms [70]. Clustering is
applied from the landmark to the current timepoint [70].

Classification (Table 3) The lower-bound landmark window
starts with the first tuple that arrives and its size changes
with each arriving tuple, since no size is predefined. If a
new landmark is set, it could be considered as having a pre-
defined length and belonging to fixed-size window types.
The upper-bound landmark window has a fixed-size, since
its end timestamp is predefined. This window type belongs
to the category of non-overlapping windows. It is determin-
istic and CF, because either its start or end timestamp is
predefined [29].

Out-of-order processing Out-of-order tuples can be inserted
into the landmark window based on their event-timestamp.

5.5 Punctuation-based window

Specification Punctuations are annotations embedded in the
data stream which are specified by an ordered set of patterns
for the attributes of the tuples. [95]. A matching function
returns true, if a tuple represents a punctuation (Eq.11).
For example, window punctuations [41] indicate the bound-
aries of arbitrary windows (Eqs. 12 13). They can be used to
propagate the window edges across operators, if a stream
is processed by multiple operators consecutively [41]. A
punctuation-based window can be non-overlapping such as
a tumbling window (Eq.14). In this case, tuples are inserted
into the window until a window punctuation arrives that indi-
cates the end of one window and the start of a new one. If
each punctuation contains a specific window id, end and start
punctuations could overlap. In other words, only the punctu-
ation with the same window id ends the window and not the
next arriving punctuation. This results in overlapping win-
dows similar to the sliding window (Sect. 5.2).

Fig. 15 Out-of-order processing of a punctuation-based window

Figure 14 shows window punctuations with the character
p in the tuples. The punctuation with the event-timestamp 8
ends the first window w1 and starts w2. Tuples are inserted
into this one until the next punctuation arrives, which makes
these windows non-overlapping.

ppunctuation(sposi tion(x)) =
{
0

1
(11)

bi = sposi tion(x) | ppunctuation = 1 (12)

ei = sposi tion(y) | ppunctuation = 1 ∧ y > x (13)

b j = ei ∀wi , w j | j = i + 1 (14)

Use-case Window punctuations can be differently defined,
for instance, with a value, with a special character (e.g., *),
or with a sequence of characters (e.g., “electric”)). Consider
a hybrid car that produces tuples with a schema consisting
of an event-timestamp, a measurement value for the level
of fuel or battery, and a string for the drive mode, i.e.,
ste(x) = 〈x, level,mode〉. Whenever the defined punctua-
tion tuple 〈x, level, “electric”〉 or 〈x, level, “gas”〉 occurs, the
current window ends and a new one begins. Consequently, a
window ends when the car switches from gas to electric drive
mode or the other way around, because it would otherwise
not be possible to calculate the consumption of battery or gas
for one drive mode.

Classification (Table 3) This window type is variable-sized,
since no size is predefined. The size of the window is deter-
mined by the distance of the punctuations and therefore
changes dynamically. Depending on the implementation,
windows may be overlapping. The window is time-based
because punctuations indicate the window edges with their
timestamps. The punctuation-based window belongs to the
category of deterministic windows, since a window punctu-
ation indicates the start of a new window [29]. The tuples
up to a specific timestamp have to be processed to identify
the punctuations and derive thewindows up to the timestamp.
Therefore, backward-context is required and the punctuation-
based window can be classified as a FCF window type [67].

Out-of-order processing In this section, we make a sug-
gestion how out-of-order processing could be implemented.
An out-of-order tuple does not change the window edges
since they are determined by window punctuations. It can be
inserted into the corresponding window. However, an out-
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Fig. 16 The session window with a gap of 4 s

of-order window punctuation results in the separation of one
window into two windows. Figure15 depicts an out-of-order
punctuation ste(12). The second window shifts to w2 =
s[8, 12[ and a new window instance with w3 = s[11, 17[
is created. This requires a recomputation of the aggregation
result.

5.6 Session window

Specification The session window records periods of activ-
ity, i.e., windows are created for periods of time where tuples
arrive [4]. The predefined timeout gap ptimeout determines
after what time of inactivity a session ends (Eq.15). If no
tuple arrives within this gap, the session ends with the last
tuple that has arrived [93](Eq.16). A new session begins with
the next tuple that arrives (Eq.17). The gap b j − ei between
two session windows can be bigger than the timeout.

ste (y) − ste(x) ≥ ptimeout | y = x + 1 (15)

ei = ste(x) (16)

b j = ste(y)∀wi , w j | j = i + 1 (17)

In Fig. 16, the timeout gap is specified as ptimeout = 4 s.
The session window w1 starts with the first tuple that arrives
at timestamp 1. It ends with the tuple ste(8), because no other
tuple arrives within 5 s after it. Since the time gap between
ste (17) and ste(19) is smaller than 4s, they still belong to the
same session window w2.

Use-case A typical example for session windows is the
detection of browser sessions.

Classification (Table 3) This is a variable-size window type,
since the size of the sessions changes according to the length
of the period of activity. Sessions are non-overlapping and
the timeout gap is defined in a time-based measure. The
start of the window is indicated by the first tuple of a
new session and the timeout marks window end, making
the session window deterministic [29]. The start and end
timestamps of the sessions cannot be computed a priori with-
out processing the tuples, thus the session window requires
backward-context [93]. Therefore, it belongs to the category
FCF windows.

Fig. 17 Out-of-order processing of a session window

Fig. 18 Out-of-order processing of a snapshot window

Out-of-order processing Figure17 shows examples of the
three possible outcomes of processing an out-of-order tuple
according to Traub et al. [92]. In the first case, an out-of-
order tuple may be inserted into an existing session, extend
its end, or shift its start, as shown in case 1. The tuple ste (17)
falls within the start and end of the existing session w2 and
can simply be inserted into the session. Secondly, an out-of-
order tuple can be located in the timeout gap of a session,
such that the end of the session shifts to the timestamp of
this tuple. Tuple ste(10) shifts the end of the first session w1.
Another tuple ste(25) shifts the start of session w3, because
of its position after the end of the timeout of session w2.

Case 2 in Fig. 17 depicts the second outcome, where two
sessions are fused. The two sessions w2 and w3 are merged,
because the tuple ste (23) shrinks the gap of the first session
below the specified timeout.

In case 3, the out-of-order tuple ste(11) arrives after the
gap of one session and before the next session starts. This
tuple forms a new session between two existing sessions.

5.7 Snapshot window

Specification The snapshot window depends on a special
type of tuples called (interval) events [72] which represent a
time interval. Before applying this window type, the times-
tamps of the tuples are modified. They can be extended to
span a certain time interval with the AlterEventDuration()
method [72]. This way, their lifetime is enlarged into the
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future. We denote this by inserting a tuple into function
pinterval (Eq. 18). This function outputs interval events that
have a left endpoint lx and a right endpoint rx [5]. The
left endpoint represents the event-timestamp (i.e., when the
tuple was generated) and the right endpoint determines the
period of time over which an event influences the output [5]
(Eq.19).

Ali et al. [5] defined the snapshot window as “themaximal
time interval that contains no event endpoints”. A snapshot
window is created for each pair of consecutive endpoints
epx and epx+1 [5] (Eq.20). Whenever an endpoint of an
event occurs, one window ends and a new window is started.
Endpoints of interval events are never between the window
edges, instead they determine the timestamps of the window
edges [5,73]. In Fig. 18, w2 starts due the left endpoint of the
second event l5 = 5 at timestamp 5, and ends due to the right
endpoint r1 = 10 of the first event.

In contrast to session windows, the snapshot window
detects periods of time where no change is observed in the
input, i.e., where no interval event starts or ends which would
change the aggregation result. Similar to the session window,
this window type would not produce windows, if no interval
events occur.

pinterval(ste(x)) = [lx , rx [ (18)

rx = lx + t (19)

bi = epx ∧ ei = epx+1 | epx ∈ {lx , rx } (20)

Use-case A use-case is to compute the average over some
attribute value of the interval events over the last minute [72].
To obtain interval events before applying the window oper-
ator, the tuples are modified to an interval of 1min starting
at their event-timestamp (i.e., rx = lx + 1min). As soon as a
new event starts, the average changes and a new window is
created. The output of each window is the average of some
attribute in the events within the last minute [72].

Classification (Table 3) The snapshot window produces
variable-sized windows which are measured in time. The
windows are non-overlapping, only the interval events over-
lap. It is deterministic, since the endpoints of an interval event
indicate the start of a new window. Therefore, the window
edges are not known beforehand and the interval events have
to be processed to derive them. Consequently, the window
type belongs to the category of FCF windows.

Out-of-order processing In this section, we make a sug-
gestion how out-of-order processing could be implemented.
If an endpoint is within window edges, the window has to
be split into two windows. The out-of-order event in Fig. 18
spans the interval from timestamp 8 to 18 and lies within the
edges of w2. Consequently, it creates the new end timestamp

Fig. 19 The slide-by-tuple window with a size of 10s and a slide of 5
tuples

of w2 and starts the new window w3. The end timestamp of
the event falls within the edges of the window prior to w5.
This window also has to be separated into two windows.

5.8 Slide-by-tuple window

Specification The slide-by-tuple window represents a spe-
cial type of sliding window that combines a time-based
window size (Eq.21) with a slide defined in a count mea-
sure (Eq.22) [67].

psize = ei − bi | ei , bi ∈ s̄te (21)

pslide = b j − bi | bi , b j=i+1 ∈ s̄count (22)

bi ≤ b j ∧ b j < ei ∀wi , w j | j = i + 1 (23)

pslide < psize ∧ pslide > 0 (24)

For example, Fig. 19 depicts a slide-by-tuple windowwith
psize = 10 s and psize = 5 tuples. The windoww1 spans the
time interval of 10 s from ste (1) to ste(11). A new window
starts whenever the tuple counter equals the slide parame-
ter. Hence, window w2 begins after five tuples at ste(7) and
includes all tuples until timestamp 17. If psize = 1 tuple,
each tuple starts a new window. It is also possible that a
tuple neither belongs to an existing window with respect to
its timestamp nor starts a new window with respect to the
counter. For instance, according to its timestamp, tuple s23
does not belong to w3 = [13, 23], since w3 only includes
four tuples and ste (23) is at count 4. Therefore, it does not
start the next window w4.

This window type equals the combination of the time-
based eviction policy and count-based trigger policy for
sliding windows (Sect. 5.13).

Synonyms This window type is also a special form of the
multi-type according to Carbone et al. [29], which describes
sliding windows with different measures for size and slide.

Use-case In the context of traffic monitoring, an example
could be a road where sensors measure the speed of each car.
A slide-by-tuple window is specified with a length of 1min
and a slide of one tuple. Every time a new sensor reading
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Fig. 20 Out-of-order processing of a slide-by-tuple window

arrives, i.e., a car passes the sensor and produces a tuple, the
average speed is calculated over a new window with a length
of 1min.

Classification (Table 3) Due to the predefined size and
slide parameters, the slide-by-tuple window belongs to the
category of fixed-size window types. As explained in the
specification, the window size is defined in a time-based
measure. The slide-by-tuple window is non-deterministic,
because tuples need to be processed to know the count of the
tuples. Only after the number of tuples specified in the slide
parameter has arrived, it is clear when a new window starts.
Furthermore, the timestamp of the tuple that starts the win-
dow is needed to determine the end timestamp of the window
which is based on the size defined in a time-based measure.
The slide-by-tuple window can be classified as FCA [67]
since forward-context in form of processing tuples after a
tuple t is needed to determine the windows to which the
tuples belong.

Out-of-order processing Since the slide is count-based,win-
dow edges will change when an out-of-order tuple arrives.
An out-of-order tuple does not change the edges of the win-
dows it belongs to, but the windows after them. In Fig. 20, the
out-of-order tuple ste(15) belongs to windoww2 andw3 with
respect to its timestamp. Since the start edge ofw3 is already
determined, the window is not affected by the change of the
tuple count. In contrast, the subsequent window w4 shifts to
b4 = 21, because one tuple is added to the tuple count. Fig-
ure20 depicts another out-of-order tuple ste (12) in the second
stream. Again the windows to which the tuple belongs do not
change. As this tuple does not belong to w3, its edges shift
to b3 = 12 and e3 = 22.

Out-of-order tuples arriving with only a small delay may
still belong to the current window or start a new window.
They do not require a shift of subsequent windows, since
there are none, but it has to be checked, if their count equals
the slide value.

5.9 Frames

Grossniklaus et al. [50] proposed Frames, which are data-
driven windows with a variable length. Frames adapt their

Fig. 21 Threshold frameswith a threshold of 4 and aminimumduration
of three tuples (sposi tion(x).Ai > 4 ∧ psize ≥ 3)

size dynamically to the changing stream characteristics, such
as stream rate or data distribution. Window parameters such
as the size do not have to be determined beforehand. The
desired output of frames is the start and end timestamps of
certain periods, rather than an aggregation value.

5.9.1 Threshold frames

Specification A frame is created, if the value of a specified
attribute Ai of a tuple sposi tion(x) is above (or below) a pre-
determined threshold t (Eq. 25). A minimum duration can be
defined ensuring that a frame includes a minimum number
of tuples n (Eq. 26).

bi = sposi tion(x) | sposi tion(x).Ai ≶ t (25)

psize ≥ n tuples (26)

Figure 21 shows threshold frames with a specified thresh-
old t = 4 and psize ≥ 3 tuples. The first frame w1 starts with
ste(4), since the attribute value 6 is greater than 4. It ends
with ste(8), because the attribute value is below the threshold.
A frame consisting of only two tuples would be discarded,
since psize would be below the minimum duration of 4. Sim-
ilar to session windows, threshold frames capture interesting
periods in the stream. In contrast to session windows, these
periods can be defined based on some attribute.

Use-case The use-case for threshold frames proposed by
Grossniklaus et al. [50] is dye concentrations that are gath-
ered by oceanographers to study movement and mixing of
coastal waters. A fluorescent dye is added to the water and a
fluorimeter records the dye concentrations. Dye levels near
zero are uninteresting for the oceanographers, but are con-
tained in long sequences of readings. These periods are not
captured with threshold frames, which makes them fit for
this purpose. For this example, frames should be reported,
where the dye concentration is higher than 0.05 units for
at least 10 measurements. From this, the formal condition
sposi tion(x).concentration > 0.05 ∧ psize ≥ 10 can be
derived.

Classification (Table 3) Frames adapt their size according
to the data content and are therefore variable-sized. Fames
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Fig. 22 Out-of-order processing of threshold frames

Fig. 23 Delta frames with a delta value of 10 (|sposi tion(x).Ai −
sposi tion(y).Ai > 10)

are non-overlapping and measured in time, since the out-
put are the start and end timestamps of their edges edges.
Frames require forward-context, since the next edge can only
be derived after processing the tuples that follow after a cer-
tain tuple. They can be classified as FCA windows. Hence,
frames belong into the category of non-deterministic window
types, since with the arrival of a record cannot be immedi-
ately determined whether this tuple begins a new window.

Out-of-order processing In this section, we make a sugges-
tion how out-of-order processing could be implemented. At
first, the threshold condition has to be checked for the out-
of-order tuple. An out-of-order tuple does not belong to any
frame, if it does not satisfy the condition. The out-of-order
tuples depicted in the upper stream in Fig. 22 do not meet the
condition sposi tion(x).Ai > 4. Tuple ste (12) does not change
anything. In contrast, ste(8) splits an existing frame into two.
Its event-time is between the timestamps of frame w2 and
therefore represents a gap between to frames.

A simple insertion can be performed for an out-of-order
tuple that meets the threshold condition and contains an
event-timestamp between the edges of the frame such as,
for example, tuple ste (15) in Fig. 22. If a tuple belongs in
front of the first tuple of a frame with respect to its event-
time, such as ste (22), it shifts the start of the frame. Similar
to this, an out-of-order tuple may shift the end of the frame
to its event-time.

5.9.2 Delta frames

Specification Delta frames detect change of a particular
attribute in the tuples. If the attribute value sposi tion(x).Ai

changes more than an amount t , a new frame is started
(Eq.27). Shorter frames then reflect periods of rapid change
such as “spikes” in the data, whereas larger frames capture
constant parts of the data. The difference (i.e., delta) is com-

Fig. 24 Out-of-order processing of delta frames

puted between the maximum value and the minimum value
of an attribute in the tuples of a frame. If this value is greater
(or smaller) than the specified value t , the current frame ends
and a new one is started.

bi =sposi tion(x) | |sposi tion(x).Ai − sposi tion(y).Ai | θ t (27)

θ ∈ { <,≤, >, ≥} (28)

Figure 23 depicts delta frames with the predefined delta
value of 10. The maximum value of the first frame is 24 of
ste(3). Tuple ste (9)with a value of 13 represents the newmin-
imum value. Since the delta between 24 and 13 amounts 11
and is therefore greater than 10, the frame ends. The second
frame holds a maximum value of 15. The difference with 3
amounts 12 and therefore the frame ends. Hence, the values
do not need to be monotonically increasing or decreasing for
this framing scheme.

Use-case In the same use-case as threshold frames
(Sect. 5.9.1), delta frames can detect periods of change in
the water density ρ [50]. A delta frame is started, when the
condition |sposi tion(x).ρ −sposi tion(y).ρ | < x is evaluated
as true.

Classification (Table 3) This window type has the same clas-
sification as threshold frames (Sect. 5.9.1).

Out-of-order processing In this section, we make a sug-
gestion how out-of-order processing could be implemented.
Before inserting an out-of-order tuple, the condition for the
tuples’ attribute value has to be checked. A simple insertion
operation can be performed, if this value meets the condition
for its corresponding frame.

If the new attribute value constitutes a new maximum or
minimum, the edges of the frames may change. This requires
to check the condition with the values for all following tuples
and shift the delta frames according to that. In Fig. 24, the
tuple ste (19) with value 18 constitutes a new maximum for
frame w2. The condition check for ste(22) with value 7 is
evaluated as false and the frame ends. This change affects
following frames, so that they have to be shifted as well.
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Fig. 25 Boundary frames with breakpoints at every multiple of the
value 6 ((n − 1)6 < sposi tion(x).Ai ≤ n6)

5.9.3 Boundary frames

Specification Boundary frames are specified by an attribute
Ai and a set of breakpoints which are defined through (a
multiple n) of a boundary b. If the attribute value crosses one
of these points, the frame ends and a new one begins (Eq.29).

bi = sposi tion(x) | (n − 1)b < sposi tion(x).Ai ≤ nb (29)

Boundary frames perform some kind of partitioning on
the stream. In contrast to the partitioning based on a key,
this is based on multiple predefined values for one or more
attributes. For the boundary frames in Fig. 25, the breakpoints
are defined as amultiple of 6. The condition for the first frame
w1 is 0 < ste(x).Ai ≤ 6. Since the tuple ste(6) has a value
of 7 and therefore crosses the breakpoint of 6, the first frame
ends and a new one begins. The condition 6 < ste(x).Ai ≤
12 applies to the new frame w2. The values of the tuples in
the frame increase at first, but then decrease again. However,
they never cross the breakpoint of 6 or the higher breakpoint
of 12, so they all belong to the second frame. Since the value
of the tuple ste (15) is greater than 12, a new frame begins.
Due to the decreasing values in frame w3, the breakpoint
of 12 is passed again at ste (21) and a new frame starts. The
tuples with the value 12 are still included in the frame w4,
due to 6 < ste (x).Ai ≤ 12.

Use-case Boundary frames are useful to build heat maps
showing the amount of time a soccer player spent in different
areas of the field [50]. The field is divided into cells and
the grid-lines form the breakpoints for the boundary frames.
Since the position of the player has a x and a y component,
the boundary frames are here two-dimensional (also called
grid frames by Grossniklaus et al. [50]). The soccer pitch
with 68x105ms is divided into a 16x25 grid. The formal
notation for the boundary frames is expressed as (n − 1)x <

ste(x).Ai ≤ nx ∧ (n − 1)y < ste(x).Ai ≤ ny, where
0 < n ≤ 16, 0 < m ≤ 25, x = 4.25, and y = 4.2.

Classification (Table 3) This window type has the same clas-
sification as threshold frames (Sect. 5.9.1).

Out-of-order processing In this section, we make a sugges-
tion how out-of-order processing could be implemented. For
boundary frames, the first step is finding the existing frame to

Fig. 26 Out-of-order processing of boundary frames

Fig. 27 Aggregate frames with a constant of 25
(
∑

ste (x)∈wi
(ste(x).Ai ) > 25)

which the out-of-order tuple belongswith respect to its event-
timestamp. If the value of the attribute meets the condition of
this frame, the tuple can simply be inserted. Figure26 shows
that if the condition is notmet, it requires to start a new frame.

5.9.4 Aggregate frames

Specification The last form are aggregate frames, where
values of a predefined attribute Ai are aggregated within a
frame. If this aggregate becomes greater (or smaller) than
a constant c, the current frame ends and a new one starts
(Eq. 30). The aggregate function is denoted as fa .

bi = sposi tion(x) | fa(sposi tion(x).Ai ) ≶ c (30)

The size is adapted, so that shorter frames capture con-
dition changes better and larger frames detect periods with
less change. This frame already fulfills application needs,
when the task is to output some specific aggregation. In
Fig. 27, the aggregate function is a sum and the condition is∑

sposi tion(x)∈wi
(sposi tion(x).Ai ) > 25. The values are aggre-

gated until the current tuple exceeds the threshold. In w1

the sum aggregate amounts 24 at the tuple with timestamp
11. Hence, the aggregate that includes the next tuple value
exceeds 25, and therefore, the tuple at timestamp 12 starts a
new frame.

Use-case Aggregate frames could be used to analyze traf-
fic data, where tuples often include the attributes speed and
volume. The cumulative sum aggregation is applied on the
attribute volume. After 25 cars, a new frame is started, for-
mally

∑
sposi tion(x)∈wi

(sposi tion(x).volume) > 25.

Classification (Table 3) This window type has the same clas-
sification as threshold frames (Sect. 5.9.1).

Out-of-order processing In this section, we make a sug-
gestion how out-of-order processing could be implemented.
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Fig. 28 Out-of-order processing of aggregate frames

The insertion of an out-of-order tuple in aggregate frames
requires the recomputation of the cumulative aggregate from
the out-of-order tuple on. In this case, tuples need to be kept
in memory. It would be useful to save the cumulative aggre-
gate for example at the end of each frame, otherwise it is
necessary to compute it from the beginning or the last water-
mark on. Besides the recomputation, the constraint needs to
be evaluated again for every tuple, since it is likely that the
window edges change for every following window. Figure28
exemplifies this with ste (23) that causes the end of frame w5

to be shifted forward. This also results in an adjustment of
the following frame.

5.10 Adaptive windowing

Specification Bifet at al. [21] proposed adaptive window-
ing (ADWIN). It represents an algorithm that automatically
adapts the size of a sliding window according to the rate of
change observed in the data stream. Typically, the size of
the sliding window is predefined by the user and stays fixed
during its application on the stream. Over time, streaming
data is subject to changes such as concept drift and distribu-
tion change, which needs to be considered for choosing the
right size of the window. Usually, the user has no information
on the time scale of this change and therefore has to choose
between a small size and a large size. Instead of defining
a window size a priori, the ADWIN algorithm adjusts the
size of the window dynamically with respect to changes. It
extends the window size when no change is observed. In this
case, there are many examples in the data, which increases
the accuracy in periods of stability. In contrast, the algorithm
shrinks the window size when data changes to accurately
reflect the current distribution. The user does not have to
deal with this trade-off anymore.

The algorithm uses a statistical test for different distribu-
tions in two subwindows that checks whether the observed
average in both subwindows differs by more than the thresh-
old (for details see Bifet et al. [21]). If it does, the distribution
has changed and the algorithm will shrink the window by
dropping old tuples. If no tuples are dropped, thewindow size
grows. The algorithm can also keep the statistically optimal
size by only dropping one tuple for one inserted tuple.

Use-case Bifet et al. used this algorithm for Naive Bayes
Prediction and k-means clustering [21].

Fig. 29 Aging function of the damped window

Classification (Table 3) The window size adapts dynami-
cally, so this window type creates variable-sized windows.
Since ADWIN is based on sliding windows, the window are
overlapping. The window size is defined in a count-based
measure. The ADWIN algorithm implements a FCA and
non-deterministic window type.

Out-of-order processing Since ADWIN implements a slid-
ing window, the insertion of an out-of-order tuple resembles
the count-based sliding window. An out-of-order tuple could
cause a change in the average and hence may change the
outcome of the statistical test, the algorithm might needs to
change the size of the window. The handling of an out-of-
order tuple thus needs to be considered in the algorithm.

5.11 Dampedwindow

Specification The damped window spans the whole stream.
A weight is assigned to each tuple depending on the arrival
time of the tuple [70]. The highest weight is assigned to the
current tuple, because it is the newest. Older tuples are not
completely discarded but associatedwith lower weights [70].
Some aging function defines how this weight decreases
exponentially over time. Typically, the exponential fading
function (Eq.21) is used as an aging function, expressing the
current time as tc and the event-time of the tuple as to [70].
λ denotes the fading factor, with λ > 0. With an increas-
ing value of λ, the importance of historical data decreases
compared to the current data [26]. Figure29 illustrates the
decreasingweight over time for one tuple. The function f1(t)
represents the aging function with λ = 0.2. The aging func-
tion f2(t) shows that with a higher fading factor λ = 0.5 the
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Fig. 30 The natural tilted time window

Fig. 31 The logarithmic tilted time window

weight assigned to a tuple decreases faster.

f (t) = 2−λ (tc−to) (31)

Use-case This window type can be used to apply data min-
ing techniques on streams. It is used in a variety of stream
clustering algorithms (as shown in the survey by Mansalis et
al. [70]).

Classification (Table 3) This window type is fixed-sized
since it includes the whole history of the streams. The win-
dows are non-overlapping andmeasured in time. The damped
window requires backward-context to maintain the tuples
that arrived in the past. Hence, it belongs to the category of
FCF and deterministic window types.

Out-of-order processing The weight of the out-of-order
tuple can be computed with the aging function based on its
timestamp.

5.12 Tilted window

Specification The tilted window keeps the whole data of
the stream in memory by storing summaries of it. For these
summaries, time is registered at different levels of granu-
larity [35]. The most recent tuples are stored at the finest
granularity, since they represent the recent changes and are
therefore themost interesting ones [70].As time evolves, they
are summarized to be stored at a coarser granularity. How
coarse the scale gets, depends on the application needs [35].
The purpose of this window type is to reduce the total amount
of data that is kept in memory [35].

Two techniques for tilted windows are the natural tilted
time window [35,43] or the logarithmic tilted time win-
dow [3,43]. As shown in Fig. 30 in the natural tilted time
frame the finest granularity is a quarter (i.e., 15min). The
most recent four quarters are accumulated to form the next
window, which constitutes one hour [43]. Then, the last 24h
build one day, which are summarized to 31 days and after
this to 12 month. Instead of 366× 24× 4 = 35136 quarters
per year, 4 + 24 + 31 + 12 = 71 tilted windows need to be
maintained per year [35].

Fig. 32 Types of events according to Gedik [41]

Fig. 33 The tumbling window with attribute-delta eviction policy and
δ = 5

The current window of a logarithmic tilted time window
also holds themost recent tuples of 1 quarter. The quarters are
then accumulated at an exponential rate of 2 [43]. The scale
then includes windows that hold the last quarter, 2 quarters, 4
quarters, 8 quarters, 16 quarters, etc. (Fig. 31). This window
schema is very space efficient, since it holds log2(365× 2×
4) + 1 ≈ 17 units of time for one year of data [43].

Synonyms Chen at al. [35] proposed this window type
named as the tilt time frame.

Use-case This window type can be used for in data min-
ing techniques, such as clustering [70] or frequent pattern
mining [43].

Classification (Table 3) The tilted window can be classified
as fixed-size, since the size of the windows is predefined
through the time scale. The windows are specified through a
time-based measure and do not overlap. The window edges
are predefined through the time scale, which means it can
be directly determined whether an arriving tuple starts a new
window. Consequently, this window type is deterministic.
However, backward-context is needed, since the windows in
the past have to be accumulated to be at a coarser granularity.
The tilted window therefore belongs to the category FCF.

Out-of-order processing An out-of-order tuple belongs into
the window based on its event-time. The insertion depends
on how the data is summarized to be at a coarser granularity.

5.13 Policy-based window

Specification The policy-based window refers to different
configurations of tumbling and sliding windows denoted as
policies which were proposed by Gedik [41]. The work aims
to categorize window types and provide detailed operational
semantics for window configurations [41].

123



J. Verwiebe et al.

Gedik differentiates into three operations which are per-
formed while maintaining tuples in a window: insertion,
eviction, and trigger (Fig. 32). Insertion takes place, when
the arriving tuple is added to its respective window. A trigger
event invokes the operator logic on a window. The corre-
sponding policy that specifies when a window is ready for
this processing is named trigger policy. An eviction removes
one or more tuples from the window allowing newly incom-
ing tuples to be inserted. The eviction policy specifies when
a window is full and tuples are evicted. These “events are
performed in different orders and in different ways depend-
ing on the window type and the eviction and trigger policies
being applied” [41].

ei = sposi tion(x) | sposi tion(x).Ai − sposi tion(o) · Ai > δ

(32)

b j = ei ∀wi , w j | j = i + 1 (33)

pevict = {sposi tion(w) | sposi tion(w)

∈ wi ∧ sposi tion(x).Ai − sposi tion(w).Ai > δ} (34)

ptrigger (t) = sposi tion(x) | sposi tion(x).Ai

− ptrigger (t − 1).Ai > δ (35)

The eviction and trigger policies can be of type time,
count, attribute-delta, or punctuation. This specifies when
the trigger or eviction events happen and changes the con-
figuration of a window. For the tumbling window, there
exist only eviction policies, because the eviction operation
is performed immediately after the window was processed.
This leads to the differentiation into the time-based, count-
based, and attribute-delta-based eviction policies as well as
the punctuation-based eviction policy, which only applies to
tumbling windows. Each of these policies has their corre-
sponding order of eviction and insertion events (for details
of the event order for the tumbling window see Gedik [41]).

The time-based eviction policy resembles the tumbling
window with a time-based measure (Sect. 5.1). After the
specified time has elapsed, the window is considered to be
full and is processed. Once processing is complete, all tuples
are evicted. This happens independently of tuple arrivals.
The count-based eviction policy for tumbling windows cor-
responds to the tumblingwindowwith a count-basedmeasure
(Sect. 5.1).Anewly arriving tuple is inserted into thewindow.
If the window then contains the predefined number of tuples,
processing is performed and all tuples are removed. For a
tumbling windowwith the attribute-delta eviction policy, the
difference of attribute values of a specified delta attribute Ai

ismeasured between the oldest tuple sposi tion(o) of awindow
and the arriving tuple sposi tion(x) (Eq. 32). If the difference
exceeds a specified delta threshold δ, the current window is
processed and tuples are evicted. Figure33 depicts a tum-
bling window with threshold δ = 5. The difference between

the attribute value 7 of tuple s6 and the attribute value 1 of
tuple s1 amounts 6 and therefore exceeds the threshold of 5.
All tuples are evicted from w1, before s6 is inserted into the
next window (Eq.33). This requires the delta attribute to be
non-decreasing. It is typicallymonotonically increasing such
as a timestamp attribute [56]. The punctuation-based evic-
tion policy resembles non-overlapping window punctuations
(Sect. 5.5).

For the sliding window, an eviction policy can differ from
the trigger policy, because trigger and eviction events do
not overlap. The resulting three types of trigger or eviction
policies can be combined creating nine different possible
configurations for sliding windows. For each of these policy
combinations, the order of the trigger, eviction and insertion
events differs (details are specified in the original publica-
tion [41]). Eviction and trigger policy can be referred to as
the size and slide parameter of the slidingwindow (Sect. 5.2).
However, different combinations of policies enable config-
urations of the sliding window that cannot be expressed
through a specification with window size and slide.

The time-based eviction policy for sliding windows deter-
mines how long a tuple belongs to a window before it is
evicted. This is independent from tuple insertions. Simi-
larly, the time-based trigger policy defines a time period
after which the operator logic is applied onto the window,
even if no tuple arrived within that time (i.e., trigger is inde-
pendent of insertion). A sliding window that follows the
count-based eviction policy keeps a maximum number of
tuples that is specified. Evictions are performed before insert-
ing new tuples. The count-based trigger policy determines
after how many inserted tuples the trigger event happens.
Before processing a window, tuples are evicted if neces-
sary. When applying the attribute-delta eviction policy on
sliding windows, the tuples that are kept in the window are
determined by the difference between their values for the
delta attribute Ai and the attribute value of newly arrived
tuple. Every tuple sposi tion(w) in window wi for which the
difference exceeds the defined delta threshold δ, is evicted
before the new tuple sposi tion(x) is inserted into the window
(Eq.34). Insertions for this policy take place after evictions.
The attribute-delta trigger policy computes the difference
between the arriving tuple sposi tion(x) and the last tuple that
triggered the processing ptrigger (t−1) (Eq. 35). If it is greater
than the delta threshold, the window is triggered again. Evic-
tions take place after the window was processed.

Synonyms Carbone et al. referred to sliding windows where
size and slide are defined in different measures as multi-
type [29]. Traub et al. used the term multi-measure window
for a window that combines count- and time-measure [93].

Use-case We describe use-cases in previous sections for the
time-based eviction policy and count-based eviction policy of
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the tumbling window (Sect. 5.1), punctuation-based eviction
policy of the tumbling window (Sect. 5.5), time-based evic-
tion and trigger policy of the slidingwindow (i.e., time-based
measure), and count-based eviction and trigger policy (i.e.,
count-based measure) of the sliding window (Sect. 5.2). The
time-based eviction policy combined with the count-based
trigger policy in a sliding window resembles the slide-by-
tuple window (Sect. 5.8). These policies can be combined
the other way around as the count-based eviction policy and
time-based trigger policy of a sliding window, for instance,
to output the average over the last 20 tuples every 2min. A
use-case in the context of machine monitoring could be to
output the average temperature of the last 20 measurements
of a machine every 2min to observe the heat build-up.

Next,wewill provide use-cases for the attribute-delta poli-
cies. Examples of monotonically increasing attributes for the
attribute-delta policy beyond timestamps are invoice num-
bers or mileage. An attribute-delta policy-based tumbling
window can be based on the invoice number as the specified
delta attribute and the value 1000 as the specified delta thresh-
old. If the difference between the first and the last invoice
number of a tumbling window instance exceeds 1000, the
average invoice amount is computed. In a sliding window,
the attribute-delta policy can also be used as a trigger policy
combined with for example the count-based eviction policy.
For instance, this sliding window keeps 50 tuples, while the
attribute-delta policymakes sure that the window is triggered
whenever the traveledmileage exceeds the delta of 25kms. In
a use-case of a car, this window configuration can calculate
the average over the last 50 measurements of tire pressure
every 25kms.

Classification (Table 3) The time-based and count-based
policies for the policy-based tumbling window can be clas-
sified in exactly the same categories as the tumbling window
(Sect. 5.1). The difference between those two policies is the
window measure, which is time-based for the time pol-
icy and count-based for the count policy. All policies for
the tumbling window can be classified as non-overlapping.
The attribute-delta eviction policy produces variable-sized
windows because the window edges are not known before-
hand and depend on the attribute values of a tuple. It
requires to compare the oldest and the arriving tuple to deter-
mine whether a new window begins, classifying as a non-
deterministic and FCAwindow type. The punctuation-based
policy exhibits the same classifications as the punctuation-
based window (Sect. 5.5).

In contrast to the tumbling window, all of the policies for
the policy-based slidingwindow classify as overlapping. The
attribute-delta trigger policy produces variable-sized win-
dows, because the evictions happen after the trigger. The
window is first processed and then the tuples are evicted.
A sliding window with the attribute-delta eviction policy is

non-FIFO, since instead of the oldest tuples, tuples with val-
ues whose difference exceeds the delta threshold are evicted.
With the arrival of a tuple cannot be determined immedi-
ately, whether a new window begins with this tuple or not.
This requires forward-context to derive the window edges
of each window and therefore belongs in the category of
FCA and non-deterministic. The attribute-delta trigger pol-
icy evicts the tuples in order, resulting in a FIFO window
type. However, to trigger the windows, tuples need to be pro-
cessed, which again requires forward-context and leads this
policy to be non-deterministic and FCA.

Out-of-order processing In this section, we make a sugges-
tion how out-of-order processing could be implemented. For
time-based policies, an out-of-order tuple has to be inserted
into the window with respect to its timestamp. Count-based
policies require an adaptation of the window edges, since late
tuples change the count of subsequent tuples. The attribute-
delta policy requires to store attribute values of the tuples
which were relevant for the trigger or eviction to happen
for a window. For instance, the attribute-delta tumbling win-
dow would require to keep the oldest tuple of each window.
Then the difference between the out-of-order tuple and these
stored values can be computed. The out-of-order tuple can be
inserted into a window, if the deviation does not exceed the
threshold. The different combinations of policies require a
combination of these out-of-order processing schemes lead-
ing to an increased complexity for out-of-order streams.

6 Discussion

In this section, we examine SPSs with regard to supported
window types (Sect. 6.1), discuss different window aggrega-
tion concepts (Sect. 6.2), and summarize our findings (Sect.
6.3).

6.1 Systems

In this section, we are going to examine which SPSs support
the studiedwindow types.Our results are listed inTable 4.We
found that all the investigated systems support the tumbling
window and the sliding window. These are the most com-
monly known and usedwindow types. The sessionwindow is
also supported bymany of the systems. Despite the complex-
ity of the policy-basedwindow, it is implemented bymultiple
systems: Google Cloud Dataflow [47], IBM Streams [60],
Apache Beam [12], and Apache Flink [14]. IBM InfoSphere
Streams supports the four types of eviction and trigger poli-
cies exactly like described by Gedik [60]. Flink implements
window evictors and triggers of the types count, time, and
delta that resemble the policy-based window [14]. Conse-
quently, Flink supports the most window types (e.g., sliding,
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tumbling, session, punctuation, landmark, delta-based win-
dows) [15,27]. The slide-by-tuple window can be supported
by systems that provide the policy-based window, since this
allows to combine the different window measures count and
time. Microsoft StreamInsight is the only system that sup-
ports the snapshotwindow [5,72,73]. Thewindow types delta
frames, boundary frames, aggregate frames, adaptive win-
dowing, dampedwindow, and tilted window are not provided
by any of the investigated systems. SPSs often enable user-
defined windows (also called custom windows), that allow
the user to extend them with additional window types (e.g.,
Google Cloud Dataflow, Beam, Flink, Samza, Spark) [10].

As shown in Table 4, the systems developed in academic
research generally support less window types. However,
some of these systems were developed several years ago
when there were not as many window types. The focus of
these systems may not be to provide extensive functional-
ity, but rather to serve a research purpose. The number of
supported window types of commercial systems differs. For
instance, IBM Streams and Google Cloud Dataflow provide
a rich functionality by implementing trigger and eviction
functions [47,60], while other commercial systems do not
offer as many window types such as Amazon Kinesis Data
Analystics [8]. The open-source systemswe investigated typ-
ically support the tumbling window, sliding window, and
session window. In contrast to most of the academic and
commercial systems, they provide the opportunity to extend
them with user-defined windows. However, most systems do
not implement more complex and data-driven window types
such as the snapshotwindow, frames, or adaptivewindowing.
Table 4 includes Scotty, because it has connectors to multi-
ple systems andprovides implementations of variouswindow
types. Example implementations of the window types can be
found in the systems and the listed publications.

6.2 Window aggregation implementation

This section presents different concepts that have been pro-
posed to enable efficient window aggregation. Traub et
al. [93,94] studied different window aggregation concepts
with respect to their throughput, latency, and memory con-
sumption. A tuple buffer simply stores the incoming tuples
and iterates them to perform an aggregation when a win-
dow ends (i.e., lazy computation). Aggregate trees [17,84]
maintain partial aggregates in a tree structure, which are then
combined to final aggregates and allow for a lower latency
(e.g., B-Int [17], FlatFAT [84], FlatFIT [80], Slider [20],
FIBA [83], LightSaber [87]). Additionally, this enables
aggregate sharing among overlapping windows. Another
window aggregation approach is bucketing [67–69], where
one bucket stores the content of one window (e.g., Li et
al. [67,69], AdaptWID [68]). An incoming tuple is assigned
to all buckets of its corresponding windows. Buckets can

store individual tuples (i.e., tuple buckets) with the drawback
that some tuples are then redundant in buckets of overlapping
windows. It is also possible to drop tuples and maintain only
partial aggregates in aggregate buckets to reduce the mem-
ory footprint. Aggregates can be incrementally updated to
reduce the latency [84]. The bucket-per-window approach
creates a throughput bottleneck for overlapping windows
becausemultiple aggregationoperations are required for each
bucket to which the input tuple is assigned. Additionally, it
does not allow for sharing those aggregates between overlap-
ping or concurrent windows. Stream slicing [63,66] avoids
the overhead of these redundant computations by diving the
stream into non-overlapping subsets of data (i.e., slices) (e.g.,
Panes [66], Pairs [63], Cutty [29], Scotty [92–94],Disco [19],
Parallel Boundary Aggregator [100], SABER [62]). For
each slice, one partial aggregate is computed and stored.
The final aggregate of a window is calculated by combin-
ing partial results of several slices. Partial aggregates of
slices can be shared amongoverlappingwindows and concur-
rent window queries. Other algorithms have been proposed
that use different concepts, such as stacks (e.g., Two-
Stacks [82],DABA[82], SlideSide [88],HammerSlide [86]),
an array combined with an aggregate tree (e.g., CBiX [24],
CPiX [25]), or a double-ended queue (e.g., SlickDeque [81]).
Most research onwindow aggregation optimization was con-
ducted on tumbling and sliding windows, since these are
the most commonly used window types. Li et al. [67] pro-
posed an algorithm for processing slide-by-tuple windows.
Tree-based techniques are generally applicable. The stream
slicing approach has been generalized to support all win-
dow types (e.g., Cutty [29], Scotty [92–94]), while providing
high-performance guarantees. To further reduce latencies,
some techniques store aggregate trees on top of slices (e.g.,
FlatFIT [80]) [93].

6.3 Summary

The classifications are important to derive implementation
requirements and to take decisions for efficient window
aggregation, for instance, whether individual tuples need
to be stored or not [93]. Common window types such as
tumbling windows and sliding windows typically have a
fixed-size and classify asCF.Window typeswith these classi-
fications often allowaneasier handlingof out-of-order tuples.
In general, more complex window types require context. For
instance, sessionwindows and snapshotwindows canbe clas-
sified as deterministic window types but have a higher com-
plexity since they require backward-context. Additionally,
more complex windows are often data-driven and dynam-
ically adapt their size resulting in variable-size windows.
However, windowing semantics become even more com-
plex for window types that require forward-context and are
non-deterministic, for instance, Frames and ADWIN. Com-
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plex window semantics also lead to an increased complexity
for the out-of-order processing. For context-aware windows,
out-of-order tuples change the context which makes modify-
ing window edges necessary.

7 Related work

In this section, we present related work, which we did not
discuss before. Our survey focuses on the specification of
window types and shows which systems support these win-
dows types. In our survey, we discussed most related work
onwindow types and streaming systems in previous sections.
This section discusses related surveys, approximate stream
processing, and modern hardware.

Related surveys Patroumpas et al. [76] formally specified
count-based windows, time-based tumbling, as well as slid-
ing windows, landmark windows, and fixed-band windows.
Furthermore, the work introduced the earliest categoriza-
tion of window types based on their properties. In Sect. 5.13,
we included the policies for tumbling and sliding windows
of Gedik [41], since they provide additional specifications
for the tumbling and sliding window. These window types
and policies were also described by Hirzel et al. [56]. Li
et al. [67] introduced and provided a detailed view on the
slide-by-tuple window. Moreover, they proposed the classi-
fication of window types based on their context which we
adopted in the classification section. Our catalog covers a
number of different window types beyond these mentioned
in the named surveys.While these publications, except for Li
et al. [67], do not cover out-of-order processing, we provide
a description for handling out-of-order tuples with respect
to each window type. Additionally, we summarize multiple
classifications that allow for grouping window types with
respect to performance characteristics and implementation
requirements, and we categorize every window type. Hirzel
et al. [57] summarized that the aggregation algorithm should
be selected depending on the aggregation operation, latency
requirements, window type, sharing requirements, and out-
of-order processing to avoid performance loss.

Complementary to our survey, Lal et al. [65] compared
window types on the basis of CPU utilization, memory
consumption, time efficiency, and operation compatibility.
Summarizing the earliestwork in streamprocessing,Golab et
al. [45] reviewed streaming applications, data models, query
languages, streaming operators including sliding windows,
as well as query processing and optimization techniques.
Hirzel et al. [58] conducted a survey for stream processing
optimizations. The tutorial of Schneider et al. [79] extends
this survey by fission optimization which exploits data-
parallelism on multiple cores to achieve a high throughput.
Giouroukis et al. [44] surveyed algorithms for adaptive fil-

tering and adaptive sampling for real-time distributed sensor
networks in the Internet of Things. In addition to these exist-
ing surveys, we contribute an extensive survey and analyses
of various window types with respect to their out-of-order
processing, synonyms, use-cases, implementation, and sys-
tems which support them.

Approximate stream processing In this survey, we focused
on window aggregation with precise results. Approximate
stream processing can be used to further improve per-
formance if precise results are not essentially needed.
Synopses (i.e., samples histograms, wavelets, sketches)
provide approximate aggregates which can be used for
stream processing to answer aggregation queries with lower
latency [40]. Cormode and Muthukrishnan [36] proposed
the Count-Min Sketch for streaming queries which can be
used to, e.g., answer range queries, compute quantiles, or
find heavy hitters (i.e., frequent items). The load shedding
technique of Tatbul et al. [85] mitigates overload of a SPS
by dropping tuples of less importance. Chen and Zhang [34]
presented two algorithms for linear bias-aware sketches that
are applicable to streaming data and provide improved error
guarantees. The hyperloglog algorithm [38] estimates the
cardinality of data streams and adapts to sliding windows.
The online reservoir sampling algorithm StreamApprox [78]
answers queries with a sliding window in a pipelined stream
processing model. The framework Condor [77] generates
windowed synopses for streaming jobs that allow an efficient
distributed computation. Condor supports tumbling, sliding,
and session windows and utilizes bucketing [67] or general
stream slicing [92–94] as an aggregation technique.

Modern hardware Window aggregation on modern hard-
ware by Zeuch et al. [98] utilizes a lock-free double-buffer
implementation where one buffer stores incoming tuples
and non-active buffers store the previous window results. It
achieves a high throughput since non-active buffers compute
the final aggregates and output the results without deferring
the processing of the incoming tuples. Grizzly [51] performs
query compilation to enable a highly efficient execution on
modern hardware.Query code is generatedwith respect to the
special requirements for streaming workloads which include
differentwindow types,windowmeasures, andwindow func-
tions. With a novel processing model, Slash [37] accelerates
distributedwindowing by leveragingRemoteDirectMemory
Access (RDMA) hardware that allows high throughput and
low-latency data transfer. The data-management platform for
the Internet-of-Things NebulaStream [97,99] combines gen-
eral stream slicing [93], adaptive query compilation [51],
and data sharing among multiple streaming queries [61].
Additionally, it enables the user to define window types
and window functions with the technique Babelfish [52] that
accelerates UDF-based operators.
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8 Conclusion

Splitting data streams into windows is a key functional-
ity of SPSs to enable operators such as aggregations and
joins. Different window types are proposed in the literature
of stream processing systems, window aggregation tech-
niques, and other related topics. Information is fragmented
across a large number of publications. This paper presents
the first comprehensive survey of window types. We exten-
sively reviewed existing literature on windowing for stream
processing as well as several documentations of stream pro-
cessing systems. To this end, we collected information on
16 different window types. We standardized the notation to
unify the formal definitions of window types and to simplify
the descriptions in future work.We investigated various clas-
sifications that exist in literature and classify every window
type according to them. For 7 out of these 16 window types,
we suggested approaches for the out-of-order processing. To
resolve inconsistencies in the terminology, we list existing
synonyms across the resources and describe contradictory
definitions for the samewindow type.We summarize all win-
dow types, their classifications, and a short description in a
table. Additionally, we provide a matrix of stream process-
ing systems that reveals the deficits of existing systems in
providing all window types and especially shows the lack of
data-driven windows. This matrix can serve as orientation
when choosing a suitable system based on provided window
types. With this survey, we aim to provide researchers and
practitioners an overview of the many window types in lit-
erature that supports them in implementing general-purpose
systems. Our paper should enable them to provide systems,
frameworks, and window aggregation techniques that are
compatible with a broad range of window types. It also rep-
resents a means for system users to find the right window
type for their use-cases.
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